资源描述:
《平面向量重难点解析汇报》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用文档平面向量重难点解析课文目录2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例目标:1、理解和掌握平面向量有关的概念;2、熟练掌握平面向量的几何运算和坐标运算;3、熟悉平面向量的平行、垂直关系和夹角公式的应用;4、明确平面向量作为工具在复数、解析几何、实际问题等方面的应用;重难点:重点:向量的综合应用。难点:用向量知识,实现几何与代数之间的等价转化。【要点精讲】1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示-----(几何表
2、示法);②用字母、等表示(字母表示法);③平面向量的坐标表示(坐标表示法):分别取与轴、轴方向相同的两个单位向量、作为基底。任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,叫做向量的(直角)坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,。;若,,则,3.零向量、单位向量:①长度为0的向量叫零向量,记为;②长度为1个单位长度的向量,叫单位向量.(注:就是单位向量)4.平行向量:①方向相同或相反的非零向量叫平行向量;文案大全实用文档②我们规定与任一向量平行.向量、、平行,记作∥∥.共线向量与平行向量关系:平行向量就是共线向量.性质:是唯一)(其中)5.相
3、等向量和垂直向量:①相等向量:长度相等且方向相同的向量叫相等向量.②垂直向量——两向量的夹角为性质:(其中)6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法。向量加法的三角形法则和平行四边形法则。平行四边形法则:(起点相同的两向量相加,常要构造平行四边形)三角形法则——加法法则的推广:……即个向量……首尾相连成一个封闭图形,则有……②向量的减法向量加上的相反向量,叫做与的差。即:-=+(-);差向量的意义:=,=,则=-文案大全实用文档③平面向量的坐标运算:若,,则,,。④向量加法的交换律:+=+;向量加法的结合律:(+)+=+(+)⑤常用结论:(1)若,则D是AB的中点
4、(2)或G是△ABC的重心,则7.向量的模:1、定义:向量的大小,记为
5、
6、或
7、
8、2、模的求法:若,则
9、
10、若,则
11、
12、3、性质:(1);(实数与向量的转化关系)(2),反之不然(3)三角不等式:(4)(当且仅当共线时取“=”)即当同向时,;即当同反向时,(5)平行四边形四条边的平方和等于其对角线的平方和,即8.实数与向量的积:实数λ与向量的积是一个向量,记作:λ(1)
13、λ
14、=
15、λ
16、
17、
18、;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=;(3)运算定律λ(μ)=(λμ),(λ+μ)=λ+μ,λ(+)=λ+λ文案大全实用文档交换律:;分配律:()·=(·)=·();——①不满
19、足结合律:即②向量没有除法运算。如:,都是错误的(4)已知两个非零向量,它们的夹角为,则=坐标运算:,则(5)向量在轴上的投影为:︱︱,(为的夹角,为的方向向量)其投影的长为(为的单位向量)(6)的夹角和的关系:(1)当时,同向;当时,反向(2)为锐角时,则有;为钝角时,则有9.向量共线定理:向量与非零向量共线(也是平行)的充要条件是:有且只有一个非零实数λ,使=λ。10.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量文案大全实用文档,有且只有一对实数λ1,λ2使=λ1+λ2。(1)不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不惟
20、一,关键是不共线;(3)由定理可将任一向量在给出基底、的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数量。向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A(x,y),则=(x,y);当向量起点不在原点时,向量坐标为终点坐标减去起点坐标,即若A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1)11.向量和的数量积:①·=
21、
22、·
23、
24、cos,其中∈[0,π]为和的夹角。②
25、
26、cos称为在的方向上的投影。③·的几何意义是:的长度
27、
28、在的方向上的投影的乘积,是一个实数(可正、可负、也可是零),而不是向量。④若=(,),=
29、(x2,),则⑤运算律:a·b=b·a,(λa)·b=a·(λb)=λ(a·b),(a+b)·c=a·c+b·c。⑥和的夹角公式:cos==⑦
30、
31、2=x2+y2,或
32、
33、=⑧
34、a·b
35、≤
36、a
37、·
38、b
39、。12.两个向量平行的充要条件:符号语言:若∥,≠,则=λ坐标语言为:设=(x1,y1),=(x2,y2),则∥(x1,y1)=λ(x2,y2),即,或x1y2-x2y1=0在这里,实数λ是唯一存在的,当与同向时,λ>0;当与异向时,λ<0。文案大全实用文档
40、λ
41、=,λ的大