数学分析教案

数学分析教案

ID:83401127

大小:5.20 MB

页数:62页

时间:2023-07-02

上传者:无敌小子
数学分析教案_第1页
数学分析教案_第2页
数学分析教案_第3页
数学分析教案_第4页
数学分析教案_第5页
数学分析教案_第6页
数学分析教案_第7页
数学分析教案_第8页
数学分析教案_第9页
数学分析教案_第10页
资源描述:

《数学分析教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

ᦪᑖ᪆ᦟᫀᐗᦪᑖ1⁚ᦪᑖ4ᦟ᛻ᦟᦟḄᳮ!ᦪᑖḄᭆ#$%&ᑖḄ'()*+-'(ᑖ)*.-'(ᑖ)*Ḅ/ᵨ1ᣴḄᑁ4ஹ⁚ஹ67ஹᦪᑖᵫ9ᑖḄ:;⚪=>?ᵫ@ABCDEFGᐭᦪḄᭆ#GᐭᑖḄᭆ#஺1ஹᑖḄឋKᣴLMNOឋKᑁஹ'(ᑖ⊤4⁚1ஹLM'(ᑖ)*஺⁚2ஹ=⚪R஺⁚3ஹᚪVW஺NஹXY᜜[\P1733(10)ஹ(17)>(18)ஹ(19)ஹ(20)eὃᦻhᦪᑖ᪆1ijᑢ᳝mnP273-271

1'(ᑁ4ᜓqஹᦪᑖ;⚪Ḅrs?9ᑖḄ;⚪t?uv/(X)B:(X)=᝞uvS஺)BV(0};⚪Ḅ:;⚪t?uv~'(X),B/(X)=᝞uvV஺)BS}:;⚪tMᦪᑖO+⌕஺i1.1ᦪᙠIjᨵi$ᙠᦪF(x),Vxelᨵ?F'(x)=/(x)ᑣᦪF(x)tᦪ/(x)ᙠIjḄOᦪ஺ᐵi1.1ᨵ᝞;⚪?1ஹ/(x)Ḅᦪ(᝞ᙠ)ᨵO᝞(x)t/(x)ḄOᦪ$ᑣ/(x)+C¡tḄOᦪᓽ/(x)Ḅᦪᨵ£ᦪO஺2ஹf(x)Ḅ¥OᦪপஹG(x)ᨵ¨ᐵ©஺᝞(x)G(x)ªt/(x)Ḅᦪ$ᑣF(x)=G(x)+C,ᓽ¬®¯°O±ᦪ஺²j$ᨵᳮ1.1ᳮ1.1᝞f(x)t/(X)ḄOᦪ$ᑣf(x)+C³⊤R“X)Ḅᡠᨵᦪ஺i1.2/(x)ᙠIjḄᡠᨵᦪ¶/(x)Ḅᑖ$·[j7(x)"x஺ᐸ»S¶ᑖ¼$/(x)¶½ᦪ$/(x)dx¶½⊤¿

2*$X¶ᑖÀÁ஺=᝞jx2Jx=^-x3Jx+c,1(cosxdx=sinx+cஹᑖḄឋK1ஹ(J/(x)dx)'=/(x),dJ7(x)dx=/(x)dx2ஹ”(x)dx=/(x)+c,W(x)=஻x)+c3ஹJ"(x)g(x)]dx=J7(x)dxJg(x)dx4ஹ^kf(x)dx=uஹ'(ᑖ⊤1ஹ^kdx=kx+c2ஹ[x",dx=-^—xm+'+c3ஹj—=InIxI+c.4ஹl*6fxdx=---Fc,je'dx=€x+cJIn(2J5ஹjsinxdx=-cosx+c6ஹJcosxdx=sinx+c7ஹjsec2xdx=tanx+c8ஹJcsc2xdx=-cotx+c9ஹjtanxsecx^=secx+c10ஹ(cotxcscxrfx=-csc+c11ஹarcsinx+cdx12ஹ---7=arctanx+c1+x2=1Bᑖ

3-5)dx,rdx-3cos1*x2(l+x2)=2BᑖÖdxj(10v+cot2x)JxJsin2cos2x'jsin2A/x,r----C--O-S--2-x---dx,Jsinx+cosᑍᚪVW:]f%4z7CrCOS2x,1>-----dx2ஹT—dxJl+x2Jsinxrv2fl4-COS2X.3ஹj(2+3)Jx4Aஹ--------dxJ1+cos2xNஹXY?1ஹ²Ø(⁚Ù⌕ᑁ4.2ஹ'(ᑖ)*ÚÛ!ÜÝᓫḄᑖßà$áâ᝞¨ßàãᩖᦪḄᑖᕖæ}t⁚⌕1Ḅᑁ4஺3ஹ⌕B?ç·'(ᑖ)*.ᑖḄᣚᐗᑖ7ᐗᦪᑖ2⁚ᑖéᑖ76ᦟ᛻ᦟᦟḄ%&ᣚᐗ7$ᣚᐗ7$ᑖéᑖ7+-ᣚᐗ7$ᣚᐗ7$ᑖéᑖ7.-᝞¨ᵨᣚᐗᑖ7ᑖéᑖ711ᣴḄᑁ4ஹ⁚ஹ67ᣴஹᣚᐗ7ê9ᑖ7

4ᑁ⁚1:ᑖë1ᣴìí±îḄê9ᑖï*$=⚪R4⁚2ᚪVWஹᣚᐗ7⁚1ᑖë1ᣴNí±îḄÀᣚ$=⚪R⁚2ᚪVWஹᑖéᑖ7⁚1?1ᣴᑖéᑖ7?1ஹ¨ᵨᑖéᑖ7æ2ஹ᝞¨/ᵨᑖéᑖ)*æ3ஹᨵ¨ᢈñæ⁚2?=⚪R⁚3?ᚪVWNஹXY᜜[\P1901পஹ(3)ஹ(5)ஹ(7)ஹ(9)ஹ(11)2ஹ(11)>(3)ஹ(5)ஹ(7)ஹ(9)ஹ(11)eὃᦻhòóᦪ!⚪7ᑖô(õö÷)P333-P374'(ᑁ4ᜓqஹᣚᐗ7(ê9ᑖ7);⚪?᝞¨BJcos2xdx?Ûùúᵨ)*$û᪵ÀᓄþÛ/ᵨᑖ)*æjcos2xdx=jcos2xd(2x)□±îḄê9ᑖï*1ஹês±ᦪdx^-d(kx+b)kJyJa2-x2dxMJq+ᔆJJx2-a22ஹᑖxadx=-—dxa+l(aw-1)a+12jxe,dx,jx-s/l-x2dx,j—ஹ

5Ji''Jὡே!"82)3ஹ#$ᦪ&ᦪᙠ=dlnxX3[--*[-+-(89.2)Jx(l+21nx)}x

62x4ஹ#ᢣᦪ&ᦪeஹdx=de'5ஹ#-.&ᦪ஺cosxdx=dsinX,sinxdx=-dcosxsec2xdx=dtanx.esc2xdx=0-dcotx512ᑖ*^tanxdx.jsin3xdx.jsin2xcos5xdxJcscxdx,jsec6xdx,|cos5xsec3xdx.6ஹ#3-.&ᦪ*----=Ji+x2JVi^7J&D?@AP190>1ஹ(2)ஹ(4)ஹ(6)0ஹB0ᣚᐗE1ஹ-.Fᣚ7^7,X=-asint.ᡈH==acostyja2+x2,X-0஻tanf77^7,X==asect1^a2-x2dx(a>0),Jj-(a>0)2ஹ᎔Kᣚx=-t〉ᵨNAOᑖPḄᦪRNᑖSᦪTUḄᨵᳮXᡈYᳮX஺

72j'jj-dx,dxJXx2\ja2+x23ஹᢣᦪKᣚex=t4ஹYᳮKᣚZ஻4.1[Jl+2xdx?@AP190ஹ1ஹ(21)ஹ(22)-ஹᑖ\2ᑖE8XA^uv'dx=^udv=uv-^vdu(^vu'clx)]^A1ஹ8XḄ_EAᑖ`abcd*eᣚfgh2ᑖ஺2ஹijdxᑖ:ᢣᦪ&ᦪH-.&ᦪ,l&ᦪுᐸo&ᦪ஺3ஹpqᵨᑖ\2ᑖE;s2&ᦪtbuvw&ᦪd2q*xᵨᑖ\2yE,1jxcosx6k,^xexdx.|,xlnxdxjjorccosxdx.xarctanxdxdx2Je'sinxdx,zec'x{/_f■+a2yrlnsinx,3\.2dX(98.2),1(1)2(90.2)Jsinxᡣ#(92Z?@AP191ஹ2ஹ(2)ஹ(4)ஹ(6)~ஹA1ஹ-2ᑖE2ஹ⌕1A?-2ᑖE

8B-ᐗ&ᦪ2ᑖB3⁚u2Ḅ&ᦪq2ᦟ᛻ᦟᦟḄᨵᳮ&ᦪ*-.ᨵᳮ&ᦪ*ᓫYᳮ&ᦪḄ2ᑖEᨵᳮ&ᦪ*-.ᨵᳮ&ᦪ*ᓫYᳮ&ᦪḄ2ᑖ-.ᨵᳮ&ᦪḄ2ᑖᣴḄᑁஹ⁚ஹEஹf-52ᑖJ+4+C]⁚1:¥¦E⁚2A⚪¨ᣴ0ஹJ52ᑖyJax2+3+C]Aᑁ⁚1:¥¦E⁚2A⚪¨-ஹJ/?«cosx®sinxdx,jR«sinx®cosxdx52ᑖ⁚1A¥¦E⁚2A⚪¨᜜h´P20K1ஹ(1)(2)2ஹ(1)ஹ(1)3ஹ(4)ஹ(6)¹ὃᦻ¼ᦪᑖ᪆¾«U®*ᑢ᳝ÁÂ*P3O5-P318ÆÇᑁᜓ^AÉu2Ḅ&ᦪ_ஹj+>஺52ᑖ஺Jax+0[X+C]xE«1®O"-4Î|>0q*ᑖPÐXᑖÑᓄᡂᑖ⚗ᑖXÕḄ2ᑖ஺«2®OÖ2-£<0q*ᑖᡂb2ᑖ*ᑖSᡂd{ax2+3+cJ,ᑭᵨ8X,ÚᑖPÛ*ᑭᵨ8Xox1ÜÝvÞ2ᑖAUa+U

9f2x-1,rx+5L2-3X+2AL2-6X+13A0ஹJᝯ.852ᑖJ஺ã/+3+cEᑖᡂb2ᑖAᑖSᡂ+cosx+cjᑭᵨ8XJḄ*ÚᑖPÛ*ᑭᵨ8X:[(U-=InIw+y1u2±a2I+c.\ju2±a~rdu.uJJ.2-ra2ÜÝvÞ2ᑖLIdxLdxஹJ\J2x2+4x+5,Jl1+6X-%2-ஹj/?(cosx)sinxdx,J/?(sinx)cosxJx,52ᑖEAᑖ31vÞ2ᑖ•3•rsin'x,rsinx,ax———axJ1c;os4XJl+sinx~ஹjsinmxcos"xdx52ᑖE(1)èéᨵ᜻ëq*ᵨᑖE*(2)ìt=Ꮤîq*ᵨïîE஺41vÞ2ᑖecoxxfin2xcos2xdxsJsinxJ?@:P201>1ஹ(6)ஹ2(3)ஹ(5)ஹ3ஹ(7)ஹ(8)B-ᐗ&ᦪ2ᑖB4⁚Þ2ᑖḄᭆòj2iᑣq2ᦟ᛻ᦟᦟḄᳮÑÞ2ᑖḄᭆòôᐸpᱥᳮö¾ᭆòjpö¾2iᑣ

10ᣴḄᑁஹ⁚ஹEஹÞ2ᑖḄᭆò⁚1ᵫ11øùúû☢221FýhþÿᑖḄ᩽▲ᣴ⁚2ᑖḄᭆᑁஹᦪᑣᦪ1ஹᦪ2ஹᨵᨵᨵ▲!"#Ḅᦪ3ஹᓫ%ᦪ&᜜()P209ஹ1P2151+ὃᦻ.ᦪ/ᑖ᪆123456ᑢ᳝9:P320—P33O

11ᑖḄ224.1;ᦪ/(x)ᙠ=!a,ᑗ4ᨵ26ᙠ?@AᑁCDEᐭ஻-1ᑖ#(IJᑖK)a=x

12uvwᐗᦪᑖ/u5⁚ᑖḄឋz&{4ᦟ/᛻~ᦟᦟ/ḄᑖḄឋz#ឋឋz6=!kឋ6ឋz6ᑖYᳮ#ឋzḄᵨ1ᣴḄᑁஹ⁚ஹK⁚1:ᑖḄឋz1ஹ2ஹឋឋz3ஹ=!kឋ14ஹឋz5ஹMYឋzᣴ6ஹᑖYᳮᑁ⁚2⚪⁚3&ᚪ1ஹ6ឋz2ஹ¡⚪᝞]ᵨ4ឋz¢£¤¥16&᜜()P223.2ஹ3ஹ4+ὃᦻ.ᦪ/ᑖ᪆12(4)ᑢ᳝9:P336-P347¦§ᑁᜓ©ᑖḄឋzឋz1S/(x)wR[a,ᑗ6ᑣ,

13£/(x)Jx=Oឋz2(ឋឋz),S°(x),±(x)eR[a,ᑗ,ᑣCD¶6·6ᦪᓰ/*)+»2¼½€ᡂ4f],fᓄ°(x)+kf(x)dx]=ᓃf°(x)dx+k^f(x)dx2222Kᑭᵨᑖ2ឋz3(ᑖ=!kឋ);IJwᨵ▲È=!6a,b,c€l,,/(x)ᙠ/46ᑣᨵf/(x)Jx=[f(x)dx+f/(xMx.ឋz4(ឋz)6S/(x),g(x)eR[a,ᑗ6Vxe[a,b]J(x)4g(x)/iJ^f(x)dx0(<0),ᑣf/(x)Jx>0(<0)ឋz5(MYឋz),Sf(x)€/?Ú],ᑣ"(x)kR[a,kIjf(x)dxl<["(x)Idx.ឋz6(ᑖuwYᳮ)6S/(x)eC[a,b],^(x)eR[a,b],g(x)ᙠ[a/]4eâ6ᑣᙠÑf]4ãäTᙠw#J,åf/(x)g(x)dx=/C)fg(x)dx1æçᑖje-è2dxḄY஺ᑖ᪆/(%)=072ᙠ[0,ë]4ᓫ%ìä12;/(x)ec[O,l],ᙠ(0,1)î6/প=224sð6

14ñTᙠ஻w(0,1),å/(஻)+஻/'(஻)=0.ᑖ᪆(ôõᦪF(x)=#(x),ᵨᑖYᳮøùᳮ஺/(x)+#0ᑖ᪆(%-ᓛ/+6),ᑭᵨ'(ឋ*+,-ឋ./012345678ᳮ:;<311ஹ?@A@ឋ.2ஹ᝞DEᐭᑭᵨឋ.G⚪IJKLMN-A-A-/T+OPQᐗSᦪUᑖVO6⁚8Uᑖឋ.Ḅ5ᵨLY2ᦟV[᛻]^ᦟ_ᦟV`Ḅab8Uᑖឋ.Ḅcd⌕5ᵨdfghUᑖiḄᜧ<klUᑖ+,-klmno)Ḅ,-pfqrstNᣴḄᑁwஹ[⁚ஹstஹ᝞DghUᑖiḄᜧ<[⁚11xystN[⁚21z⚪{}~qrᣴஹ᝞DklUᑖ+,-ᑁ[⁚11xyst1(1)ᐹSᦪ(2)Sᦪw[⁚21z⚪{}~qrPஹ᝞Dklmᱏ)Ḅ,-[⁚11stxy[⁚21z⚪{}~qr

15ஹ<3L᜜6P2231(1)ஹ(2)6ஹ8ὃᦻᦪVᑖ᪆(ᑢ᳝)P336-P347ᑁwᜓ0ஹ᝞DghUᑖiḄᙠᜧ0.5ᵨ1¹/'(X)ᙠ»(A¯°ᑣ1/2(¼½=0Ḅᐙ⌕ᩩÁÂ஻x)P0st2ᑭᵨUᑖ'(ឋ஺z1kl¬/(x)ᙠ¡a,(AÄÅÆ]Ç₈ᩩÁ1Vx,ye¡0,lW1\

16ff(x)dx--^f(~)l<—.@nnnk=2Pஹklm_re)Ḅ,-st1ᑭᵨÒÓSᦪÔÓUᑖ¢i8ᳮÕÖ8ᳮ஺Iz1¹/(X)ᙠ¡0,1A¯°ᙠ(0,1)'×஺/প=2?

17⁚1:!"#$%ᐻ'⁚2(⚪)᝞+,ᵨ'⁚3(ᢥ⚪/0ᣴ,ᵨ21ஹᑖ34ᦪḄ5ᑖJ2ஹ78ᑖḄ᩽▲ஹ3ஹ9Ḅ᩽▲⁚4(;ᚪ=>?ஹ@A(;᜜CDP2322ஹ(1)(3)3ஹ6(1)ফஹ7(1)(3)(5)7ὃᦻNᦪOᑖ᪆0Q(ᑢ᳝TU)P347-352WXᑁZᜓ\᝞]/(X)ᙠab]defᑣᵫᑖ[/(//5Qj"k4ᦪ:xe[a,b],mnᑖd▲4ᦪoᳮq5Qᑖr▲4ᦪG(x)=f/(f)bxe[a,b]5ᳮ1᝞]/(X)ᙠawdefᑣᑖd▲4ᦪ/1)=xybᙠz{ᑗd}~'(x)=/(x)஺px+AxpvஹTaal/ஹi-F(x+Ax)-b(x)J(F\x)=lim-------———=hm⁐---------------ioA%a-*஺Ax

18pv+ZLr[f(t)dt=hm—--------=lim:L-1----=/(x)&->0AxAX->0Ax"ᙢ((/পb)=/ூ(x)௃9(x)-/(x)]"(x)ᑖ᪆ឋ¡Ḅ,ᵨ1ஹ▲ᑖḄᦪ1¢£(x)=[e'dt,F'(x)24ᦪy=g(x)ᵫ¦§£erb+fcosJFdf=0¬5l<=92ஹ᩽▲(fJb>1᩽▲lim®-----…[e2,2dt3ஹᑖ1¯/(x)ஹy(x)ᙠ[°±def²³1-22f/(x)g(x)Jx<{fgJaJa2¯/(x)ᙠaᔣdef(f/(x)dx)<(b-a)^f2(x)dx.¶t2,»XIccit;ᚪ=>(1ஹᦪre~,2dt.2ஹ᩽▲lim.@ஹ.JAD[-x'eºஹ!"#$%ᐻ'5ᳮ2(»ᑖOWX5ᳮ)᝞]/(x)ᙠ¼b]def~(x)½/'(x)Ḅ"k¾4ᦪᑣf/(x)dx="b)—ভ(1)(1)mn!——#$%ᐻ'n,ᵨ¦ÀÁᑏᡂ

19£/(X)JX=F(X)I>F0)-F(«)-"Ä5ᑖÅᐭdr▲15ᑖrdx11+¶Ä®ᜓ.][71--arctanxL=arctanx\"arctan0=—2°4nn11Jtsin2^dx=£——dx=—(x-sinx)I\?Ë-SÍ)-0]=ᐔ72⚪/1ᑖ34ᦪḄ5ᑖ¦Î(ᑭᵨᑖz{}±ឋ2x,0

20Ù³jmax{x,x1]dx=fxdx+jx2Jx=^x21:I28_J__17ߟ/+1"]"7.⚪/2,â78ᑖḄ᩽▲¦Î(ᑭᵨᑖãä5ᳮ1᩽▲lim2"ᵯX.x(Aு0)”ߟ>ooJnxÄ..r+isinx,„r+*dxlim-----=dxhmsinm—“T8Jnxn->ooJn/=limsinInxI":=limsin[ln(஻+2)-In/?]n—»oo“Too=limln(l+—)sin=lim—sin=0.n—>oo<஻">8M⚪/39᩽▲¦Î(ᦋᑏ9᩽▲nlimê஻ë777nnᑣ¾᩽▲=limV/(-)-=ffMdx.n1᩽▲limYÄlimX2)=limV———ᣚí=x,“-8î+ᓃ—Wj+(?nnn'=dxfI12dx-arctanxI(=71n72᩽▲lim---------........(p>0)“T8YV21஻+2'+.஻஻2SkpÄlim----------(=lim)——r஻f°஻“+஻f°£஻P"

21=lim(—)p.—=fxpdx=-—xp+1Ig=-—஻T0°nnp+1p+1=>1ஹ5ᑖjmin{l,x}dx2ஹ᩽▲limf——dx"78Joi+x3ஹ᩽▲lim(—^ߟ+——+•••+—?)஻->8஻+l஻+2n+n@A(1ஹôõöd⚪/÷¦Î2ஹ᝞+ᙠ5ᑖã,ᵨᣚᐗᑖÎíᑖùᑖÎárú;û0஺5ᑖḄᣚᐗ9ᑖùü?ý"ᐗ4ᦪᑖOü8⁚ᑖÎ;þ4ᦟ᛻ᦟᦟḄᑖḄᣚᐗᑖᑖᣚᐗᣚᐗᣴḄᑁஹ⁚ஹஹᑖḄᣚᐗ⁚1"#$%&⁚2"(⚪*⁚3"-ᚪ/0ᣴஹᑖḄᑖᑖᑁ⁚1"#$%&⁚2"(⚪*⁚3"-ᚪ/01ஹᑖḄᣚᐗ⁚1"23%&

22⁚2(⚪*⁚3-ᚪ/04ஹ56-᜜89P2441(2)(4)(6)5ஹ(1)(3)(5)6@ὃᦻCᦪᑖ᪆FGHIஹᑢ᳝LMNP347-P366QRᑁᜓTஹᑖḄᣚᐗ%&"IVWᑖ[f[(p(x)]d(p(x)-F[

23l,*7xarcsinx,(2)2—,dx0VT7xdx#(1)°l+cos2x஺2cos~x24)1F=—[xtanxl]"tanxdx]+lnlcosxl1]=!(/+ln-)24242I,11•rrxarcsinx,1arcsinx2ஹ(2)r-.dx=——I2,d(l-x)LVTT2H1_____-parcsinxd\Jl-x2_____2i-(Vl-x2arcsinx\Pdx)/1ஹ1—(—,———j-------462212(3/(x)Ḅᦪ¡sinxInx¢jxf\x)dx#£sinxln¤¡/(x)ḄᦪNᡠ¦f(x)=(sinxInx\=cosxlnx+—sinxxJ/(x)dx=sinxInx+c§¡tV*'(x)dx=^xdf(x)=xf(x')\\-^f(x)dx=(xcosxlnx+sinx)I\(sinxIn%)I"=;rlnsinI/0"P244ஹ3(2)ஹ(4)1ஹᑖḄᣚᐗᳮ1/(X)ᙠ°4±H²³N´ᦪX=9(f)ᙠµ¶(ᡈ¸£)H²³ºWN»a4°(x)W/?,(p(a)=a,0(£)=஺Nᑣf/(x)dx=f)S'(f).

24(4XYᑡᑖ"(1)Àaߟe-2,%(96.2)(2)fߟÂ=-(91.2)4x(l+Jx)#(1)H“-e-2-,ᑣx=Ãn(lT),dx=4,2\-t2»x0In202§¡(2)Ä4=NNᑣx=/Ndx-2tdt,J3.x14t12§¡Fdx_Æ2tdt_r2dt]-1+4)—Ã]7(1+7)=21nrl^-21n(l+/)l'-21n-lk=21n-1+/'3(5ÈÉ"´f{x}ᙠ[-a,a]Hºᑣr....,j2('/(x)dx/(x)ÊᏔᦪ"[0஻x)Ê᜻ᦪÈÉ£/(x)Jx=[“/(x)dx+//(x)dx£f(x)dxx=-t-f/(T)=£f(-x)dx.

25§¡´஻x)¡ᏔᦪNᑣ£/(x)Jx=£f{x}dx+£f(x)dx=2/f(x)dx.´/(%)¡᜻ᦪNᑣ,f(x)dx=-^f(x)dx+f(x)dx=0,n(6XY[(r3+sin2x,cos?xdx,(01,2)2#ᑭᵨÐᦪḄ᜻Ꮤឋᨵ"n7t[(]+sin2x)cos2xdx=2psin2xcos2xdx2]421=Oj^sin2xdx=-j^(l-cos^x)t/x11271=—x\z=.)4°8/0"P2441ஹ(2)1Óᐗᦪᑖ9⁚ÀFᑖ-Ô2ᦟ᛻ᦟᦟḄᳮ#ÀFᑖḄᭆÖNÀFᑖḄXYÀFᑖḄXYÀFᑖḄXYᣴḄᑁஹ⁚ஹஹ×ص¶HḄÀFᑖ⁚1:Ùᐭ×ص¶ÀFᑖḄᭆÖNÛÜᦈÞßàᦣḄᭆÖNᣴ"âãߟäåæᐻ%&Ḅèᵨᑁ⁚2(⚪*GᵨẆêÂᐭë⚪I⁚3-ᚪ/0ஹ×ìᦪḄÀFᑖ⁚1Ùᐭ×ìᦪÀFᑖḄᭆÖNÛÜᦈÞßàᦣḄᭆÖN

26"âãߟäåæᐻ%&Ḅèᵨ⁚2"(⚪*GᵨẆêÂᐭë⚪I⁚3"-ᚪ/01ஹ56-᜜89P250(1)ஹ(3)ஹ(5)ஹ(7)ஹ(9)@ὃᦻCᦪᑖ᪆FGHIᑢ᳝LMP372—P384QRᑁᜓTஹ×ص¶ḄÀFᑖí⚪Ḅîï"ᙠᙢᳫ⊤☢ᚖõᔣHà÷øùN´úøùûüýþᙢᳫÙᡠ◤⌕Ḅᑖ᪆/%=ᙢᓣᑮ"#ᡠ%Ḅ&'()*ᙢᳫ=-00:0=1F(x)=^/nv2(:;)0<=1>?ᦪ/xᙠBCDa,+8Iᨵ<=V/?>a,/xᙠN,ᑗIPQR+ocJa]1^᩽▲aᙠᑣc/xMxᦈfᔲᑣhiᦣ஺lmᙢn<=aif(x)dx=limff(x)dxJ4->q»Ju—00■KO\f(x)dx=limff(x)dxflimff{xylxJa—>-<»Jab—>+sJr—□0|1}~cḄfᦣឋ

27Pு1#ᨵKdxI——=limInxIh)=+oopW1#ᨵ,Jlxb—>+ooP<1#ᨵ1.n.1#ᦈf஺|2(06.2)Tq=Uᑖr_ஹ"=(1+x2)2^1c"">+ᔆ)=_1_!—|+8=1’2)(1+/)221+/02|3(04.2)c-.377=|4°°2-----------------HMx-2=r,x=/2+2,Jx=2tdtx2+810+oo-e_2tdt_2tM_ᐔ^=I------=-arctan-1=qIf(f+9)33003

28P250ஹফஹ(4)ஹ¢£?ᦪḄT=Uᑖ<=2>?ᦪᙠ¤஺▬¦¢£(஺ᴟ¤)V£>OJ(x)ᙠ¨+£ᑗIPQR<¢£?ᦪ/(x)ᙠ&«IḄT=Uᑖff(x)dx-limff(x)dx(2)](2)^¬᩽▲aᙠᑣᦈfᔲᑣiᦣ஺lmᙢn®<=]/(x)ᙠb▬¦¢£Reb-£[f(x)dx=lim\f(x)dx]/(x)ᙠ஻°¢£R<(a0#}~T=UᑖḄfᦣឋ஺q=l#(º=lnxl(J=oo»xa1ᓃ…=0iᦑT=Uᑖᙠ0

297Tarcsin2(x--)I:22InIn-¿+Jx-xIH=ln(V3+2)2ᦑ^=K+ln(G+2)2P250ஹ(6)ஹ(8)ÃÄÅ¢Æ▲T=UᑖÇ¢£?ᦪT=UᑖḄ³´——µ¶·ᐻ¹^ÈÉqᐗ?ᦪUᑖË10⁚

30ÈஹÙ☢øùḄàáÑ⁚1ᵨåᐗæìíàá¹^c1ஹîïᙶ᪗<2ஹóᦪ^ஹ3ஹ᩽ᙶ᪗Ñ⁚2|⚪õÑ⁚3ÏᚪúஹÝÞßßUûâ☢UÑ⁚1ᵨåᐗæìí¹^JßU¹^1âᔣU¹^Ñ⁚2|⚪õÑ⁚3ÏᚪÏ᜜þÿP2691ஹ(1)ஹ(2)ஹ(4)ஹ(6)3ஹ(1)ஹ(2)ஹ5ஹ(1)ஹ(6)ஹ(1)ὃᦻᦪᑖ᪆()ᑢ᳝P366-P391ᑁᜓ!"ஹ#ᐗ%&ᳮ()*+,Ḅ./(ᑖᒘஹ12ஹ*᩽▲Ḅ5ᓄ78(1ஹᙠ:,<=>"?@,ABCDEFDdx,IJ*DSḄ#ᐗdsᵨ/(x)2dx⊤N஺2ஹ,ᑖS=[f(x)dxoTஹU☢WXḄ☢,(1ஹYZ[\ᵫy=/(x)2y=/(x)_ᡂ(S=f"(x)-y(x)ldxd1*ᵫeᱥ\g=1-hi\y=xᡠ_ᡂḄU☢WXḄ☢,஺k

31kl/mn=1"2/op?ᙶ᪗(_L,1)y=x22J஺9v)S=w(l-2y2-y)x=LI82ஹ᩽ᙶ᪗{U☢WXḄ☢,S=g['(eweᐔ1=43^-(1+COS4^)J^=8^3ஹYZ[\ᵫᦪl/⊤N[x=x(t)7a

32s=jIy(r)Ix'(t)dtd3*\x=a(t-sint)a>0,00,0

33r-r(6),a<0)"(4+2)i?2£2/2=---(4^)^i^-[(i—r-i]++233lo(3ஹ(4)£ஹ*¤¥Ḅ¥,h¦☢,1ஹ*¤¥Ḅ¥,ᓃ=஻f/2(%Mxv="Ig2(y)©y22d1*ᵫ[\2y+2=1(%ª0,«ª0)¬@=0,«=0ᡠ_Ḅa"b~[YX®y¤"ᕜᡠo¤¥¥,k.=±P²)x2ஹ*¤¥Ḅ¦☢,d8*ᙊ´+(>-µ24](0<஺<ᑐ®g¤ᡠo¤¥Ḅ⊤¹☢,஺ks=2ºw(6+yja2-x2)-1"dx»Va2-x2

34,adx?dx47raha4a2-x247rabarcsin—Iw=47r2ab-aa(P270ஹ5(2)6ஹ(2)±Á(5Â1ஹ*UᔣWX☢,ḄÄÅhl%ஹ2ஹ*[\ÆḄÄÅhl%3ஹ*¤¥¥,h¦☢,ḄÄÅhl%Ç£ÈÉᦪÇ1⁚ÉᦪḄËᦣឋÎÏ4ᦟÑ᛻ÓÔᦟÕᦟÖḄᳮkÉᦪᦈËhØᦣḄᭆÚÛÜᦈËÉᦪḄឋÝÞ?ᵨ+*2ßàÉᦪá2Éᦪâ?ᑨäÉᦪḄËᦣឋᣴḄᑁஹÑ⁚ஹl%"ஹᦈËhØᦣḄᭆÚÑ⁚1ஹᵫ*æçèéᦪḄ2êëᦪìÉᦪᭆÚíÉᦪᦈËhØᦣᣴÑ⁚2(d⚪N(ᵨ+ᑨäËᦣឋð*2ᑁÑ⁚3(ÎᚪTஹËᦣឋḄᑨò¬ᦈËÉᦪḄឋÝÑ⁚1(ᵫᦪᑡᦈËḄCauchy÷ᑣ¤ᓄÉᦪᦈËḄCauchy÷ᑣf

3581£ØᦣùÞ⌕dûü/>=1»Ñ⁚2(þÿ⚪⁚3⚪⁚4ᚪஹ᜜P6ஹ2ஹপஹ(3)(5)3ஹ(1)(2)6#ὃᦻ&ᦪ(ᑖ᪆+,-./ᑢ᳝23P1-P967ᑁ9ᜓ;ஹᦈ=>?ᵨḄᭆCD⚪ḄEFGHIJᦪḄK11H1—~H--1---1•…=2-RSF■UVḄW/22-2"2ஹ1+2+3+…+/஻+-=?-\RSFUVḄW/]^Vᦪᑡ`ᐸbcᵨ“Se”ghᙢjkᩭḄ⊤nhopqᦪrpᐸs/opqᦪḄt⚗n=IS=M,+wH---\-u-2/n2nopqᦪḄ஻⚗wᑖKᦪᑡ஺V,1yqᦪ-1/Ḅ஻⚗wᑖKᦪᑡz,|ᦈ=ᑣoqᦪ-1/ᦈ=~o᩽▲limS=sn

36p(1)ḄKrps=£>“n=l1qᦪ5£aq"=a+aq+aq2+…+aq"+•(஺0)Ḅ=ᦣឋ஺1n=OᢥV,஺(1/)S=Q+aq+…+aqn=<.‘"'lqloo?ᦣq=-1.S=a-a+a+...+(-1)"-1a+…+(-1)"-1a+…n0஻pᏔᦪᦑ4=1,?ᦣ஺a஻p᜻ᦪ2ᑨqᦪ++…Ḅ=ᦣឋC஻(஻+1)1.21.3+1)ᢥV,:1_S஻஻(+1)_i_j_j__11223n஻+1஻+1lims=\.“T8nP6ஹ2ஹ(2)(4)¢ஹ=ᦣឋḄᑨ£¤ᦈ=qᦪḄឋ¥Vᳮ1qᦪḄ§¨ᦈ=©ᑣ

37qᦪ£>“ᦈ=ḄO®¯£ு0,ᙠM஻ுN\p஻=1±®²ᯠᦪ³ᨵ1Un1+"n+2+…+஻”+pµ£+ᡂ·¸¹ᵫᦪᑡᦈ=Ḅ§¨©ᑣ²ᯠ»ᑮy½᪵¿ÀᡈᦋÃqᦪḄᨵ▲⚗\ᦋÃqᦪḄ=ᦣឋ3¸¹ÄKqᦪ?ᦣ1஻¸¹\N᝞ᜧÈ⌕ÊP=N,Ëᨵ111N1++•••+ுN+1N+22N2N2⚪1qᦪᦈ=ḄÌ⌕ᩩαlim““=0n->oo«=1¸¹]lims“=S,"TOOᑣlimu=lim-s஻%_/=s-s=0஻T8n"TOOᑭᵨᦪᑡ᩽▲Ḅឋ¥᧕¸.☢⚪⚪2]ᑣ஻=|஻=1-°£W4b“=%””=a+bn=l஻=1n=lPC8-2/Úᔩ=஺Zp=Ý஻=1"=1-3/y஺aᑣn—

38=l⚪3yqᦪ£>“ᦈ=ᑣᦋÃßḄᔜ⚗ḄcᮯSᐭãe஻=1äᡠ»ᑮḄæqᦪᦈ=~çK\Ã஺

39è14ᑨ£qᦪJ>sinḄ=ᦣឋ஻=i஻éplim஻sin=lim஻,=lᦑêqᦪ?ᦣ"T8஻"TOO஻“17F2S15yqᦪ£=ëGqᦪḄK.811001_2épz—Ú>=ïð(2஻)24ᓰ஻224ᡠò81001001yJ=y±_y—!—ᓰ(2஻-1)2ó஻2£(2஻)222r22_71~"_3õ_öP63ஹ(3)>(4)ஹ1ஹ÷øqᦪᦈ=>?ᦣḄV,¤ឋ¥2ஹᵨV,ᑨqᦪ=ᦣឋᯠ±ùúḄûüᨵýüþḄÿᕖ஺ᦪ2⁚⚗ᦪ4ᦟ᛻ᦟᦟḄ⚗ᦪᦣឋḄᑨ"#%&'ᑨ"Ḅ᩽▲*+,&-.᪷-ᑨ"0%&'ᑨ"1*+Ḅ2ᵨᣴḄᑁ6ஹ⁚ஹ8ஹ⚗ᦪ9ᐭ⚗ᦪ,;<⚗ᦪᦈḄᐙ⌕ᩩAᣴBஹ⚗ᦪḄ&'ᑨ"ᑁ⁚1CD⚗ᦪᦈḄ&'ᑨ"1*+6⁚2E⚪G⁚3CD&'ᑨ"Ḅ᩽▲*+

40⁚4IE⚪G⁚5IᚪKLMஹNᑖஹ&-ஹ᪷-ᑨ"⁚1ICDNᑖᑨ",E⚪G⁚2ICD&-ᑨ",E⚪G⁚3ICD᪷-ᑨ",E⚪G⁚4IᚪKLஹPQ᜜STP131ஹU1ஹU3ஹ52ஹ3ஹ4VὃᦻYZ[ᦪ\⚪ᑖ]U^_`aP820-P832bcᑁ6ᜓeஹ⚗ᦪfᨵᦪ£>“,k/NO,ᑣnᐸp⚗ᦪn=\qᳮ1U⚗ᦪᦈḄᐙ⌕ᩩAaᦪᦈOtuvᦪᑡ7ᨵx஺n=lBஹ⚗ᦪḄ&'ᑨ"qᳮ2U&'ᑨ"Ḅ1*+aff%.yz{⚗ᦪ,|}ᙠᯠᦪM஻ுN,n=

41=\a,஺”CO00U1akᦈ,ᑣ,ᦈM=1M=1U2k£ᦈ,ᑣ£>“ᦣ.“=1஻=1ᵫ4Wᨵ.

42S=a+a+---+a{k}ᨵx=>£pᦈ.n=\"=1,Y%ᦣ=>{s“}x=>{$"}x=>ᑍb,ᦣn=ln=\eIqᳮpIᜧḄᦈPḄᦈ,PḄᦣᜧḄᦣ.E1]Pᦪ(¡¢vᦪ)¤L1+J-+L…+L…Ḅᦣឋ.T3Pnp11ᑓ1\pwiᨵB/,¯£Bᦣ.nnM஻'p>l1l.1111ஹ,11.1+(1——x)+(1----1----1)+(F•••H---)2P3P4p5P6P7஻8஻15"OC1y(——\Op-ln=0[ᵫ½£(3)"ᦈ,ᦑ£¿ÀᦈIn=02w=|ÂE2]ᑡ⚗ᦪḄᦣឋ(1)^2"sin—(2)£1Ä3"Ä<(஻+1)ব⎅Ç\পÉ2"sinÊ4(2)”,¯£(ÌÍᦈ,33>>=13

43ᦑ£2"sin£ᦈ.n=\3"(2)É------>1-------------2Î஻(஻+1)\Mn+n)ᖾq¯£Bᦣ,ᦑߟ/1ᦣÐ/£Ñ(஻+1)(3)É0<஻"=1dx<^y[xdx=--LÀ1+x2-*>3஺n_¯1ᦈ,ᦑ¤["dxᦈ.7஻=13nT2/i=l)1+XC](&'ᑨ"Ḅ᩽▲*+)Øᨵz{⚗ᦪ,.£>஻3,Ù஺),|஻=1"=1hm—=k.஻ߟ>8b1ஹk0<Ú<+8,ᑣ“.£>“ÛᦈᡈÛᦣ.஻=111=\2ஹk4=0,ᑣÝ£>“ᦈÞqᦈ.n=ln=l3ஹk=+8,ᑣÝ£>“ᦣÞq£%ᦣ.n=l7i=leIC]pI1ஹÛ▤áPÛᦣ.2ஹâ▤ᦈ,Z▤ᦈ.3ஹZ▤ᦣâ▤ᦣ.E3ᑨ"ᑡ⚗ᦪḄᦣឋ.(1)^sin—(2)^(1-cos-)/=1஻M=1஻MஹNᑖஹ&-ஹ᩽-ᑨ"

44coqᳮ3(Nᑖᑨ")få>“y⚗ᦪ,æᦪ/(x)ᙠçèn=lé,êëì,íî,ᓫ¢ð,|/(஻)=஻“,ᑣᦪp“.¡n=lNᑖñf(x)dxᦣឋòÛ.ᵫ½ñ/(x)dx=£ñ/(x)dx=fô,n=l«=1¯%+i=/(஻+1)<ᓃ,=['/(x)dx=/(")=«„88OPᵫ&'ᑨ"Ì,ᦈ,ᑣ£",=[/")dxᦈ,ᵨM=1w=ln=lᦣᓽ£%ᦣᑣ£ᓃ,=ñ/(x)dxᦣ.஻=]n=l001E4úᦪ£—i—cP>1ᦈ,01lp-lp=1.rd=]n(lnx)I+=+8x

45xᦑp>lᦪᦈp41ᦪᦣ.ᳮ4(ᑨ!")#£>“&'⚗ᦪ)n=llim^±L=pM—>00u11nᑣP<1ᦈ2Pு1ᦪᦣ.

46ᳮ54᪷ᑨ!"6#£>“&'⚗ᦪ)w=llim7=PᑣP<1ᦪᦈ2P>1ᦪᦣ.85ᑨ9:ᑡᦪḄᦣឋ.OPIIPGপ£?x>042@:ញ஻Dញ஻.E41ᵫᑨ!"..«„1x"+in\+rlim------------“f8U“T8+1!x"nM==0<1ISn+1Gᦪᦈ.42ᵫ᪷ᑨ!"lim-^==lim—J=5>1Gᦪᦣ."4ᔊJK1ஹ஻“MNOᵨᑨ!".2ஹp=lᑨ!"Q᪷ᑨ!"ᜫᦔ◤ᦋᵨᐸWᑨ!".86ᑭᵨᦈᦪឋYZ[lim\=0.“T84஻!6Z[_◤Z[ᦪMaᦈkV5+1b4c62ᵫdlim—=lim------------------is%+lim(஻+?♦(]+Q=084஻!6-

47ijP131ஹ2ஹ4kஹlm1ஹnopᑨ!"qrstuvwx᧕ᑖ᪆.2ஹ|'⚗ᦪᦣឋᑨ!"Ḅ}~஺3ஹ?⚗ᦪḄᦣឋ᝞ᑨ!ᕖ:.?⚗ᦪḄQᩩkᦪ3⁚ᦈ4ᦟ᛻ᦟᦈQᩩᦈḄᭆ┯ᦪᦈḄᑨ!ᦟḄ"ᦈQᩩᦈ¡ᐻᳮxᦈQᩩᦈḄᐵ¤ᣴḄᑁ§ஹ⁚ஹ¨"?ஹᩩᦈQᦈ⁚1©ᐭᦈQᩩᦈḄᭆ⁚2ᦈQᩩᦈḄᐵ¤ᣴ\ஹ┯ᦪḄᦣឋᑁ⁚1©ᐭ┯ᦪḄᭆ§⁚2«¬¡ᐻᳮ⁚38⚪®⁚4ᚪij±ஹlm᜜³´P212ஹ1ஹ3ஹ5ஹ3ஹ4µὃᦻ¸ᦪᑖ᪆¹4:6ᑢ᳝¼½P22-P23¾¿ᑁ§ᜓK?ஹᩩᦈQᦈᡃÂÃÄG⍝᝞ᑨ9'⚗ᦪḄᦣឋÆÇd?⚗ᦪᡃÂ᝞ᑨ9WḄᦣឋᕖÈÉᔲËWÌᓄ&'⚗ᦪcÎᑨ9ᕖÈ

48qὅ@Ðᨵᐵ¤ᕖÈᡃÂe?Ò⌕ᳮÔÕÖ×஺ᳮ1᝞Øᦪ£|Î1ᦈᑣᦪ“Úᦈ஺“=1”=1Z[Û£1/1ᦈᵫÝÞᦈßᑣnV£>OJN,஻ுN,k=n+1VåᯠᦪP,ᨵn=\ᵫ±çèétê1l“ᩩᦈ=«n=ln=lE«,.•\ஹ┯ᦪḄᦣឋ.s᝞£4?16"“஻஻+஻3…+J16"+…4஻஻>°6஻=1Ḅᦪï&┯ᦪ.

49ᳮ24¡ᐻᳮ6᝞ØᡠᨵḄ஻ᨵù2஻“+1cúᔳu=0,ᑣ┯ᦪ£4-1ýUᦈnnM=!Z[஻⚗þᑖÿᦪᑡḄᏔᑡ$2*s2k=஻]_஻2+“3_”4---w2u-l_U2kᡈ1S2k~U\_஻2_஻3-஻4_஻5---W2M-2~U2k-\^~U2k2ᵫ1!"%ᓫ%&'(ᵫ2!"5ᨵ*+%ᦑ%ᦈ.(/lim%=s,£->oo45Jms=limWs+u=s2k+l2kk+]K->00AT+OO878lims“=s,ᓽᦈ..n=\;1<=>ᑡ?ᦪḄ.ᦣឋ(Bᦈ.ᢣD5ᩩFᦈ.G5HIᦈ..12--,xG-OO,+OO2£-l"Tlnl+-.”=]஻,n=l஻;2ODB?ᦪ“HIᦈ.(ᦪᑡ2ᨵ+(ᑣ?ᦪ஻=|co»>,T,HIᦈ..n=lODU2ᨵ+(ᦑVᙠ">0,YZKV,45I஺T14M1%I,`U£ab1ᦈ..n=lᦑ£>THIᦈ..n=lcdeP21ஹ2ஹ2ஹ4

50hஹij1ஹᩩFᦈ.kHIᦈ.Ḅᐵm2ஹno?ᦪḄpqrᐻᑨuvᳮxyz?ᦪx4⁚|?ᦪ}~4ᦟ᛻ᦟᦈ.ᦈ.Ḅ(?ᦪᦪḄᑖ᪆ឋᦟḄ.ᦈ.ஹஹᦈ.ᡈஹ?ᦪᦪḄᑖ᪆ឋ.ᦪᑖ᪆ឋḄᵨ.ᣴḄᑁஹ⁚ஹஹᗩ?ᦪḄᦈ.ᦈ..⁚1=Ovᳮ1⁚2ᵫvᳮ¢£ᦈ.Ḅᭆ¥(ᦈ.Ḅᭆ¥¦ᦈ.Ḅ.ᣴ⁚3;⚪¨eᦈ.(ᦈ.ª.ᑁ«ஹᗩ?ᦪḄᑖ᪆ឋ.¬?ᦪ®¯°±²Ḅᦪ(³ᨵ´ឋᕖ¶⁚1=Ovᳮ2·¸ឋ(¹ឋஹºឋ⁚2;⚪¨eᦪ.⁚3}ᚪcdhஹij.}᜜½P391ஹপஹ(3)2ஹপஹ(2)7ஹপஹ(2)¿ὃᦻÂᦪᑖ᪆Ã>ᑢ᳝ÆP25-P76|Çᑁᜓɱ᝞8Zaxn=a+ax+ax2H—+axn•••(1)Hoi2nn=0

51ᡈX—%0஻=Q+QÎÏᜩ+…+X—%0஻+…Ḅᦪ⚗?ᦪn=0Ó®|?ᦪ(ᐸÕbÖ×?ᦪḄmᦪ(Øᯠ1ᙠx=0ᜐᦈ.(B1ᙠb஺ᦈ.(ᑣÓk5£a"x”Ḅ஻=௃ᦈ.(ᦈ.ḄÝᔠÓ®ᦈ.ª.ஹß?ᦪḄᦈ.ᦈ..|?ᦪḄᦈ.ªᨵ¯àáâḄj᪀(ᡃå7>8Ḅvᳮæç<=.vᳮ1᝞è¬?ᦪ£a,,x"ᙠ᳝ᜐᦈ.(x*O,lxlî"ᦈ.(ᦑ஺“k”ᨵ+(/45/,=1X\axn\^axf\-\—\'i"Ḅᦈ.ªᵫ¯IÓ᪀ᡂ.IÓḄᦈÓn=l®ᦈ..vᳮ2I4?ᦪBM=llimI%11=/ᡈlimò7=/"ߟ>00஺஻->8Vᑣᦈ.5ef1c,0

52lim=limIllxl=Z-lxl"T8"f8a“(1)0ᦪᦣᦈR=.(2)2=0,xjlx1=0<1,!"ᦪ#ᦈ,R=0.$1%&ᑡ(ᦪḄᦈ*(1)(2)£(,1-3/(஻+2)3"3n82nবZ(-ir'^r-n=lJ-L4ஹᗩᦪḄᑖ᪆ឋ:.;ᳮ2=>ᦪḄ?@ᦪAs(%)cᦈAR,R>0,71=0(1)S(X)ᙠ(-R,+R)GH;(2)5(%)ᙠ(-R,R)ᑁLMNOL⌲⚗MᑖᓽVxe(-R,R),UVW4஺/WLZ-পn=0"=0஻ᓝ1(3)s(x)ᙠ(ߟH,R)ᑁᨵGH`ᦪNOL⌲⚗%`ᓽ00O0s'(x)(2)n=0w=0(4)ᦪ(1)b(2)bcᦪᨵdeḄᦈ.$2%&ᑡfᦪḄ?@ᦪ.(1)Sc-ir1—ফ£(஻+1)l"n=l஻n=0mn(1)᧕pᦈA1.=

53s(x)=£(Trᡈxe(-l,l)“=1<ᑣ“x)=ᳮ,1-(u="=1஻n=1=1—x+x2,•-+(ߟ1)-IX'~I+-••=---,ᦑ1+X{ns'(x)dt=£-^ߟ=ln(l+x)ᓽ5(x)-5(0)=ln(l+x)s(x)=ln(l+x)xe(-l,l)(2)ᦈA1,=/(x)=£(n+l)x"xe(-l,l)”=0ᑣ(/«)W=£(("+1)஻W=££~”=0Rn=0...............X.1n1(3)3n1ஹᦈᦈᦈ*Ḅ%ᦈbᦈ*.2ஹ?@ᦪḄᑖ᪆ឋ:?@ᦪḄ%.@ᦪḄᦪᦪ5⁚ᵨ4ᦟ᛻ᦟᦟḄ¡¢@ᦪᡂ>ᦪḄ¤¥¦§¨¦§ᣴḄᑁªஹ⁚ஹ¤

54ᣴ,ஹ@ᦪḄᦪᑁ«/¬®u¯¬᪍®±²/¬ᦪu¯¬᪍ᦪªᖧ/´%µ¶®/¬ᦪᡈu¯¬᪍ᦪḄᐙ⌕ᩩº᯿¼ᦪ®.4ஹ½¾@ᦪḄ>ᦪ⁚1n¿`5ÀÁᵨḄ®⁚2n$⚪çJ½¾Æᣚ1ÈᑖMᑖ⁚3nᚪÊஹ᜜ÌÍP491ஹ(1)ஹফஹ(3)3ஹপஹ(2)ÐὃᦻÓᦪᑖ᪆Ô´&µᑢ᳝×ØP90-94>Ùᑁªᜓ,ஹ@ᦪḄᦪ,ÛᭆÝᦪ஺µ+Þ´x.x஺µ+ß´,ᑗ+…+âã1!2!n\´X-X஺µ"H---´1µåA/´Xµᙠ/ᜐḄ/¬ᦪçᓣ4°å/´Oµ+Sx+ᦋ,…ì…´2µ1!2!஻ãA/´xµḄu¯¬᪍ᦪ.ᦪ´1µᡈ´2µíîᦈ/´xµ,᝞ðᦪ´1µ´ᡈ´2µµᙠñµ´ᡈX0=0µ▬óᦈNOᦈ“Xµ,ᑣå/´xµ¶®(ᦪ´1µ´ᡈ´2µµ.

55;ᳮ1=@ᦪ/(x)ᙠ¦ôḄõÀ⚞*v(%o)ᑁᐹᨵ▤`ᦪᑣùḄ/¬ᦪ(1)ᙠ஻(%0)ᑁᦈoVxev(x),limR“(x)=0.U0M-»00;ᳮ2ú@ᦪ/(x)ᙠû°Ḅõ⚞*ᑁ¶®ᦪ./(x)=Z%(x-Xo)"n=0ᑣᐸ¼ᦪ4=£2(஻=0],2…)n\ýþnÿ஻x)ᙠ0ḄᓽU(x0)ᑁᦪ/(x)=£a„(x-x)n,0஻=0ᑣ⌲⚗ᑖ:/(%)=/'(%)=%Wo)=2%fm(x=n\ajaon—)n\ஹᦪḄᦪ!.#$%⌕!.x2n8nxX1ஹev=l+x+—+•••+—+•••2!n!஻=0'3v5.+1+…=£(,1)஻2ஹsinx=x--4--++(T)஻3!5!(+1)!஻=0(2/1+1)!82nY3ஹcosX=1--——I----1-(-1)M+S(-1)(W2!(2/1)!4ஹln(l+x)=x——+—+…+(_])"T—+…23n

56sn/(-11„=i«5ஹ(l+x)஺=l+ax+3^~—x2+•••+2!a(a-l)(a-஻+l)஻n!718ᦪarctanxḄ9:;᪍!.=>?/(x)=arctanx,18@U/A)=ߟ^=1—/J"τC|<11+X~MFGH/IJ=/w-/(o)=£]>(,1)“KJn=0L(-1)ᓝ|-ᓰ2஻+1ᵫO/(0)=0ᦑf(x)=£(])"chM2஻+172(06.1)Qᦪ/(x)=—JXḄRᦪ.2+x-%41=/(x)=---------------=^~+^_(2-x)(l+x)2-x1+x2111—13231+x"27Y1K=N(/+>-g"3n=0[J஻=018\=NR+(T)"]x"D«=0LK,173(96.1)8ᦪSᦪ—ḄT.n=22(«-1)=UM஻--1ᑣ

57Y1Y=——In(l-x)-----[ln(l-x)-x------]22x2V(1J111τ111ᦑ)--------=f(ߟ)=——Ini—+ln—+—+-t^2n(n-1)24222831c5=—In2H--48XY>P491ஹ(5)ஹ(6)3ஹ(4)Z[:1ஹ\]5$^!Ḅ%⌕ឋ.2ஹ\]`a!b.cdeᦪc6⁚ghᦪij4ᦟlm᛻opᦟqs=ghᦪḄᭆuTvᑭ:xᦈz{ᳮ}~QᦪgᦟlrḄᦪ%vᑭ:xᦈz{ᳮQᦪgᦪᣴḄᑁஹm⁚ஹb,ஹᦪᣴḄᭆuᦪḄឋ.ᑁஹᦪḄghᦪ!.m⁚>1ghᦪm⁚2>=vᑭ:xᦈz{ᳮ

58m⁚3>7⚪>Q2ᕜḄᦪ!ghᦪ.m⁚4>iᚪXYஹZ[.i᜜P61ஹপஹ(2)ஹ(5)ὃᦻ£ᦪlᑖ᪆¥(¦)ᑢ᳝©ªP96-P602^ᑁᜓ¬᝞asߟ+Z[cicosnx+bsinnx]nn2n=|Ḅᦪ¯ghᦪ.,ஹᦪ.°ᨵ²³ᦪ஻x),g(x)}᝞´f/(x)g(xMx=O,ᑣ¯f(x),g(x)ᙠ[a,ᑗ¶.ᦪ1ஹsinx,cosx,5·2%,(>052%,ߟ-5·஻C,(>05஻CḄឋ>jsinnxdx=0,|cosnxdx=0-zr,¹}jºm=ncosmxcosnxdx,=ீ¼[0tnHn%..[m=nsinmxsinnxdx=<}[0m^njsinnxcosnxdx=0.-nஹᦪḄghᦪ!.{ᳮ7.1᝞´2¹ᕜḄᦪ/(x)ᙠ½`[-º¿¶!⌲⚗ÀᑖḄghᦪ}ᑣᐸᦪ.ao=,Hf(x)dx,a=,H/(x)cosnxdx,n71ᐔ—

59/(x)sinnxdx.஻=1,2,…ÇÈ>QÉ1ÊËÌᙠÍ-º%ζÀᑖᨵ:ᑍ஻n81f(x)dx=—Jdx+Zj[acosnx4-bnsinnx]dx=n-7t2_n=I-nnᑍa஺1y&=—If(x)dx.71'njf(x)coskxdx=—jcosnxcosnx-n2y+hsinnxcosnx]dx=Jacosnxcosnxdxnn-71=ᑍ%jna=—j/(x)cosnxdxn-nÛᳮ=—j/(x)sinnxdx.ᑍ-71FᦪÜ}Ý⌕/,ÉXÊᙠÍ-%,%ζÀ}¶Ḅghᦪßàáᙠ}âQ8஻%)~Ḇ+E[acosnx+bsinnx],tln2=iMæçcos஻x+b“sin஻x]àᔲᦈzOf{x)?{ᳮ2᝞´ᦪ/ÉxÊᙠÍ-ᓛ¹Î¶íî>É1Ê◀ᨵ▲$c,ñ`ò᜜}ᜐᜐ²³ôÉ2Êᑖõᓫ]}÷ᓫ]½`Ḅ$ᦪᨵ▲}ᑣ/ÉxÊḄghᦪᙠ½`Í-º¹Î¶ᜐᜐᦈz}ᐸTᦪ

60f(x),x&(x)Ḅ²³às(x)=)(x+O)+/(x—0)],xù'(x)Ḅcñ`òø—+0)+/(,0)],X=±7l-7T7V~/(F+0)=Um/(x)=-l.Xfᡠ/(x)Ḅᦪᙠ1=஻ᜐᦈ/(+0)+/(())_2[22ᱯ/()ᙠ[-#$%&᜻(ᦪ,ᑣ]an=—1f(x)cosnxdx=0,஻=0,1,2…-nb=[f(x)sinnxdx,"=1,2n71$ᦪ+,/(x)~£>"sinwx,-./0ᦪ.”=1/(X)ᙠHr.2%&Ꮤ(ᦪᑣa=—I/(x)cosnxdx.஻=0,1,2,…n71$d=0,4ᦪf(x)~£a“cos஻x.-50ᦪ./j=0

61628/(x)&2:ᕜ<Ḅ(ᦪᙠ=>#%Ḅ⊤@A.

62J(ᦪL4ᦪ᜻ஹᏔALᣴḄᑁஹ⁚ஹஹ2/ᕜ<Ḅ(ᦪḄ4ᦪ⁚1,%2/ᕜ<Ḅ(ᦪḄ4qᦪrA.⁚2,Msᑭuvwᳮᣴ⁚3,6⚪ᑁஹ=>0,/%Ḅ(ᦪḄ4ᦪ.⁚1:(1)Ꮤ(2)᜻⁚2,6⚪⁚3,hᚪjkcஹ]ph᜜P691,(1)ஹফஹবஹ2ஹ3£ὃᦻ¦ᦪᑖ᪆©(ª)ᑢ᳝®P124-P127¯°ᑁᜓzஹ2/ᕜ<Ḅ(ᦪḄ4ᦪ2/ᕜ<Ḅ(ovtḄ4ᦪḄqᦪrA&²³´8/(x)2/ᕜ<+ᣚ,x=¶ᐭ/(%).¹71º/(x)=/(ு)=9(y).71ᑣ᜛(y)½&2Gᕜ<Ḅᕜ<(ᦪ¾¿%(p(y+=f—(y+2^)7t=/(—),+2/)=/(—y)=e(y)7171&°(y)ᙠÀ-ÁÂ%Ḅ4ᦪ

63ay(p(y)~-T+Xkcosny+hnsiny]2=]nᐸ¹IL(p(y)cosnydy.14bn=—^(^)sinnydyᐔM71Jy=¶ᐭᨵ:fM~F+£[a“cosᓤx+b„sinÎx]Ï2=1IIW஺஺=",f(x)dxf(x)cos^-xdx.o=7f(x)sin^-xdxwᳮ2᝞Ó/(x)ᙠÀ-/,/Â%ÔÕ:(1)◀ᨵ▲Ø~Ù>Ú᜜ᜐᜐÛÜ(2)ᑖÝᓫßàᓫß=>ḄØᦪᨵ▲ᑣ/(%)Ḅ4ᦪᙠÀ/,/Â%ᜐᜐᦈᐸá(ᦪ:/(X),xᕜXx)ḄÛÜ/(%+0)+/5-0)s(x)=Ú2/H+O]+/(Z-O)x-±l261Jᕜ<1Ḅ(ᦪ/(x)=ãe*,O

64MN26=1,ᦑ6=’,&24=-[f(x)dx=—jf(x)dx=2'dx=e-1lçr/ஹnᐔi1f2/z-zஹ஻Gxa=7Lcos~xdx=~j1)/(X)cosdxnii/-i=2f—excos2n/ixdx=-----------7]21+(2஻]ê=/?஻=ãj=2jexsinInjrxdx2஻G(e-1)1+(2ë2Nᙠ=>0ìÂ%ÔÕsᑭuvᩩîᦑe-18i+(e-l)2^ߟ5(cos2n;vx-2஻sin2n/rx)~rïl+(2஻%)2—e004%Ḅ(ᦪḄ4ᦪ.8/(x)ᙠ0,/%ᨵw©êðñḄ2/ᕜ<Ḅ4ᦪ,◤Jñᑮ%ôᵨḄᨵ,(1)Ꮤ,᝞Óö÷J/(x)ᙠ0,/%Lᡂ50ᦪùº(ᦪ//(x),0

65ᙠÀ0,2Â%Lûü/0ᦪ,Mý/(X)þÿ᜻ᑣᨵb=£/(x)sindxnr.nᐔxMr2.n^x=[xsin—dx=](2-x)sin^—Jx2஻ττn7rx-----[rxcos——x\-cos----ax]n஻ᐔ2°24nnx,2nnx,fi-nnx,cos12----r1xcos12i—Icos----dx]7rn-2----1n7r2---1--------2Q8,nᐔ(-1)22n-2,k+\=—5—rsin—=n஻-122ᵫ)/(x)ᙠ[0,2],-./(x)ᙠ[-2,2],-(-1)AQk+1)xᦑ=sin---------,xe[0,2]71ᦇ=0(2k+1)2789:;ᦪ/(x)==0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭