成考专升本高数二课堂笔记

成考专升本高数二课堂笔记

ID:83339487

大小:17.30 MB

页数:153页

时间:2023-07-04

上传者:灯火阑珊2019
成考专升本高数二课堂笔记_第1页
成考专升本高数二课堂笔记_第2页
成考专升本高数二课堂笔记_第3页
成考专升本高数二课堂笔记_第4页
成考专升本高数二课堂笔记_第5页
成考专升本高数二课堂笔记_第6页
成考专升本高数二课堂笔记_第7页
成考专升本高数二课堂笔记_第8页
成考专升本高数二课堂笔记_第9页
成考专升本高数二课堂笔记_第10页
资源描述:

《成考专升本高数二课堂笔记》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

0⚜ᜓᦪḄᜧᑤᦪᑁᦪᙠὃ!"ὃ᪶⌕%,ᓽ!(ᓫ*+,ᨵᐵᦪᭆ01ឋ3Ḅ⚪5678ᑖ:;<=ᦪ>Ẇ@ABᡠ;DᦪE>⚜ᜓAFG☢:I78ᑖ:ᓝᑖK⌕Ḅ஺MNOὃ⌕%P1.ᳮUᦪḄᭆ0(%ᦪḄ⊤WXஹZ[\1ᦪ]஺(%ᑖ^ᦪḄZ[\ஹᦪ]("+_ᓫᑖ^ᦪḄ`a஺2.ᳮUᦪḄᓫcឋஹ᜻Ꮤឋஹᨵfឋgᕜiឋ஺3.Uᦪ=/(")pᐸrᦪstu1(»wxḄᐵy(Z[\ஹ]\ஹ`a)(%ᓫcᦪḄrᦪ஺4.{|}~ᦪḄᑣpNᔠ஺5.}~<=ᦪḄឋ31ᐸ`a஺6.U<=ᦪḄᭆ0஺7.(_ᓫ▭⚪ḄᦪᐵyX஺M⌕ᑁPஹᦪḄᭆ01.ᦪḄZ[(1)pᙠᯠ,Bᡈᢈᢝ!Ḅᡈὅ¡¢Zᦪ]Ḅ஺£ᵨ¥¦a,b,c……⊤«஺ᙠᯠ,BᡈᢈᓄḼḄᡈὅ¡!®ᦪ]Ḅ஺£ᵨ¥¦x,y,z,...⊤«஺(2)ᦪḄZ[²ᙠ³ᓄᨵ´³xgy,yµx¶ᓄ᝞¸xᙠ¹ºᦪ»ᔠD¡ᦪ]½y¾᯿AÀÁÂfÄᨵÅ-ÇZḄᦪ]pwAÀᑣÈy>xḄᦪÉ>y=f(x)(xCD)ᐸxËyË6ᡈᦪ஺Ì᝞ᦈÎᦪy=ax(ᐸa⊤«ÏÐ)ᒴÒÓÔÕS=S+vt0Äᡂᦪ0=Ḅ+51(ᐸCo>¢ZᡂG>ᓫÝÞᡂ)ᙠßàᦪḄZ[á⌕Ḅâ6ã´⌕ã஺Z[\ᙠᦪäßåᦪfᨵZ[ḄḄ¡]ç(ᓄè\)D,È>ᦪḄZ[\஺É>D(f)஺AÀÁÂxᙠDßé¡ᦪ]½ᦪyᢥ᯿ÇZḄÁÂf,ᨵÇZḄᦪ]pwAÀ஺ëx¡Z]a½ᦪìf(x)ḄAÀ]É>f(a),ᨵ½íÉ>y|x=a஺]\ᦪyḄ¡]çÈ>ᦪḄ]\É>Z(f)஺Ì1.ᦪḄZ[´⌕ã(1)ðᑡᔜóᦪ´³ᦪô®Ḅ

1A_f(x)=x,g(x)=J?B/(x)=lnr3,g(x)=31nr/(x)=ln|x|,^(x)=Inxc2-ixD,ÿ==Iூᶧnoooioi┐⚪௃B.29501ᑡᔜ!"ᦪ$%&'"ᦪ()Ḅ+AJব=/2,gx=V?/-1C/(r)=x,g(x)=r(sin2+cos2r)D./x=lgx2jx=21gxூᶧ11000102┐⚪௃C஺A2.B"ᦪCDE19401"ᦪ'=4H7+✂0-1ḄCDE+A.0,5B.1,5C,1,5D.0,+ooூᶧ11000103┐⚪௃B஺5-x>0l(x<5OP=(2)[9701]"ᦪS=J/-5X+4ḄCDE+A.(-oo,1]B.[4,4-oo)C.(-co,1]U[4,+oo)D.(-oo,1)U(4,4-oo)ூᶧ11000104┐⚪௃[]C஺

2x2-5x+4>0(x-l)(x-4)>0x<^x>4D(f)=(-co.l]

3/(X2+1)=(X4+2X2+1)+(X2+1)=(x2+l)2+(x2+l)f(t)=i2+tf(x)=x2+x2."ᦪḄ⊤pqrᵨḄ"ᦪ⊤pqᨵuve᪆q(x]q)ஹ⊤zqஹ{pq஺(I)e᪆q|^}~rᦪᑣஹᗩஹᢣᦪஹᦪஹu"ᦪ)ᦪᡠᑮḄ]e᪆⊤]஺ᵨe᪆⊤]⊤p'"ᦪ"ᦪḄe᪆q%x]q஺(2)⊤zqᙠ▭ᵨ$%r|^}ᡠḄY~Ḅ"ᦪYᑡᡂ⊤%ᵨO⊤p"ᦪᐵ%"ᦪḄv⊤pq⊤zq஺(3){pqaf(x)+'CḄ"ᦪ%CDE+D(f),ᵫ¡|^}~"ᦪ¢ᦪY%£¤ᡃ¦§Oᙠ¨☢ªC'«ᙶ᪗Oxy,ᵨx°ªḄ±⊤p|^}ḄY%ᵨy°ªḄ±⊤p"ᦪY஺¡+%ᙠD(f)ᑁḄ³'x´(Ḅ"ᦪYf(x)µC¶¨☢«ᙶ᪗$Ḅ'±p(x,y),¸xᙠD(f)ᑁ^¹º%±Pᙠᙶ᪗¨☢ª¼¹%½¾ᑮ¨☢ªḄᩩÀÁ%+ᵨ{pq⊤p"ᦪ஺"ᦪḄuv⊤pqᔜᨵÂñ%ᙠᐹÅᵨº%rr+uvÆqÇᔠÉᵨ஺3."ᦪḄ{Êᵨ{pq⊤p"ᦪᡠᑮḄÀÁ%"ᦪḄ{Ê%ᵨ{Ê⊤p"ᦪ%Éᡃ¦ᨵ§ËÌÍ¡ÎÏ{Ð%ÐÑ«ÒᙢẆÕÖᱥḄ¹^ᓄÙÚ%Û¡ᳮeÝ)ᦪ$ḄᭆßஹÆq~àá+ᓝᑖä⌕Ḅ஺æ±qç{%A᝞ç"ᦪy=x3Ḅ{Ê஺CDE(3,+8),YE(-00,+00)X-2-1012y-8-1018Hஹé"ᦪஹ◚"ᦪ~ᑖë"ᦪ(1)é"ᦪ"ᦪᐵᵨe᪆]ìf(X)⊤pḄé"ᦪ%᝞y=x2lgx,íJ')஺(2)◚"ᦪᵫÆÚF(x,y)=0µCḄ"ᦪᐵìf(x),◚"ᦪ஺(3)ᑖë"ᦪᨵºî⌕ὃð᪵Ḅ"ᦪ%¡ᐸCDEᑁ|^}xḄóôY%"ᦪóËᵨ'õḄx]⊤p%¤+⌕ᵨ&'ᡈ&'OªḄx]ᩭ⊤p஺÷"ᦪ“ᑖë

4"ᦪ”஺A᝞%ᑖë"ᦪx+1x<0y=0,¸x<0º%"ᦪ]y=x+lú¸x>0º%ᵨ"ᦪ]y=x-lᩭ⊤p%'"ᦪḄCDE+(-00,+oo)„ᐵ¡ᑖë"ᦪ⌕üýOα1)ᑖë"ᦪ+ᵨÎ'x]~þᩭ⊤p'"ᦪ%¤ó+⊤pÎ'"ᦪú2)£"ᦪ]+ᑖë⊤pḄ%ᡠOᔜëḄCDEÿ᪗3)ᑖᦪᦪḄᦪᐭḄ;4)ᑖᦪḄ!"#$ᔜ⚗!"#Ḅ'(஺*4.ᑖᦪcosxx<0/(x)=«r-(1)[0106]3W*,7Uf(0)=oூ=ᶧ?@11000109B┐D⚪FG௃[=]1஺exx<-1஻J)=<)(2)[0301]3I11,ᑣf(0)=஺ூ=ᶧ?@11000110B┐D⚪FG௃[=]-1஺-11x1<101(3)3I,ᑣPxe(-co,+co)f[f(x)]=_______ூ=ᶧ?@H000111B┐D⚪FG௃[=]1஺P-12f(x)=1f{f(x)]=f(1)=1Px<-lᡈx>lf(x)=0f[f(x)]=f(0)=1.,.PXG(-00,+8),f[f(X)]=1^ஹᦪḄ`ᓫឋc1.ᦪḄᓫdឋ!"3ᦪy=f(x)ᙠgh(a,b)ᑁᨵ!"(1)᝞no(a,b)ᑁḄpqrX1sX2Px1

5ឤᨵf(X1)f(X2),ᑣwᦪf(x)ᙠ(a,b)ᑁ$ᓫd}~Ḅ;ឤᨵf(X1)>f(x).ᑣwf(x)ᙠ(a,b)ᑁ$z{ᓫd}~Ḅ஺2qBᓫdxyᡈᓫd}~ᦪwJᓫdᦪ஺ᓫdឋ$gh$ᩭḄ஺ᓫdᦪᢣḄᓫdgh஺*᝞ᦪy=x2ᙠgh(0,+oo)ᑁ$ᓫdxyḄᙠgh(-oo,0)ᑁ$ᓫd}~Ḅᙠgh(-00,+00)ᑁ$ᓫdḄ஺2.ᦪḄ᜻Ꮤឋ!"᝞noᦪf(x)!"#DḄpxឤᨵf(-x)=f(x)ᑣwf(x)JᏔᦪ᝞no!"#DḄpxឤᨵf(-x)=-f(x)ᑣwf(X)J᜻ᦪ஺ᏔᦪḄᐵoYw᜻ᦪḄᐵow஺3.ᦪḄᨵឋ!"3ᦪf(x)ᙠgh(a,b)ᑁᨵ!"᝞nᙠᦪM,o(a,b)ᑁḄpqx,ឤᨵ|f(x)|WM,ᑣwᦪf(x)ᙠ(a,b)ᑁ$ᨵḄ,ᔲᑣwf(x)ᙠ(a,b)ᑁ$Ḅ஺*᝞Bᦪy=sinx,ᙠ(-co,+oo)ᑁឤsinx|Wl,ᡠᦪy=sinxᙠᐸ!"#ᑁJᨵᦪ஺xD(/)=(-co,(O.+co)(l.+co)y=gᨵ|1|<14.ᦪḄᕜ£ឋᙠ¤ᯠᕜ¦§Ḅ¨©ª«ᕜ£¨©஺!"oᦪy=f(x),᝞nᙠ¬ᦪT>0,opq®ᦪx,ᐵ¯f(x+T)=f(x)ឤᡂ±ᑣwf(x)Jᕜ£ᦪw²³´µḄᨬ·ᦪTJᦪḄᨬ·ᕜ£ᡈ`wJᕜ£஺*᝞sinx¸$••ᕜ£ᦪ

6sin(x+2^)=sinxA:=0,±l,±2—,ᨬ·ᕜ£T=2¿oᦪy=sin஺x,—2ᐔsin(nwx+2k?r)=sineo(x+—^ߟ)=sineoxᐟ=0,±1,±2,…,o)ᨬ·ᕜ£*5.ᦪḄឋc(1)Ã0201Äᦪf(x)=x3sinx>(A)᜻ᦪ(B)Ꮤᦪ(C)ᨵᦪ(D)ᕜ£ᦪூ=ᶧ?@11000112B┐D⚪FG௃Ã=ÄB஺஺(=(-8,+8)/(-x)=(-x)3sin(-x)=.(sinx)=/sinx=/w^(x)=/(x)×——9(a>0,awl)(2)Ã9702Ä3f(x)J᜻ᦪÌa'+l2ᑣF$(X)(A)᜻ᦪ(B)Ꮤᦪ(C)Î᜻ÎᏔᦪ(D)Ï$᜻ᦪÐ$Ꮤᦪூ=ᶧ?@11000113B┐D⚪FG௃Ã=ÄB஺12-(/+1)gঞ22(ax+1)Ä/2(>+1)15/ig(-x)==-g(x)2(a~x+\')2(/+1)gঞ᜻ᦪF(x)=f()g()ᏔᦪXX(3)ᙠ(0,+co)ᑁÓᑡᦪ$ᦪḄ$1y=(A)5(B)I77(C)y=sinx(D)y=ln(1+x)ூ=ᶧ?@11000114B┐D⚪FG௃Ã=ÄD஺ÕஹÖᦪ

7!"3×ØᦪJy=f(x)(1)᝞nᵫÚÛḄx=M»)(2)$ᦪᑣwJy=f(x)ḄÖᦪÝJx=P(y),'wy=f(x)Jßàᦪ஺qBáâã¬ᵨx⊤æ¤çèᵨy⊤æéçèéÚêx=P(y)ḄyᣚJx,êxᣚJy,Ýìy=P(x)஺!ᳮ᝞nᦪf(x),D(f)=X,Z(f)=Y$z{ᓫdxy(ᡈ}~)Ḅᑣ!ᙠÖᦪx=ï"),=ᓃZ(ò=X'Ìó$z{ᓫdxy(ᡈ}~)Ḅ஺ÖᦪḄôõBöôB÷ßàᦪf(x)Ûxø08),ù$ᔲúᡂJᦪöøôB᝞n*=$ᦪêûüxᣚᡂy,êûüyᣚᡂxý=yþ´¸$y=f(x)ḄÖᦪ஺qB(1)ßàᦪf(X)ÿḄᦪḄX(ᙢὅḄᦪᐸḄ)(2)!ᦪy=f(x)&Ḅᦪx=f'(y)ᩩ(ὅḄᦪ)*Ḅᩩ)஺᪷-./012ᡃ*4⍝6!ᦪy=f(x)Ḅ789:ᑭᵨxপ>9402Bᦪf(x)=2X“Ḅᦪᦪ(x)D(A)log2(x+l)(B)l+Iog2X111+X=10g2---(C)21-x(D)21ogx2ூMᶧOP11000201Q┐S⚪UV௃>MBB஺

8MTx-l=logy2x=l+logy2y=l+logx(x)0)2(2)ᦪ/(*)="Ḅ_`oூMᶧOP11000202Q┐S⚪UV௃>MB(0,1)U(1,+00)y=&x1=inyX1x=----InyZ(7)=(0,1)U(L+8)j3lᦪ2'+1Ḅᦪpjxl=ூMᶧOP11000203Q┐S⚪UV௃11+Xy=i°g2—>MBl-xpஹrstDᦪ1.vᦪᦪy=cḄx`j-00,+00l,ᩩyzX{Ḅ|ᯠ./Ꮤᦪ஺2.ᦪy=jᦪlḄx`"_Ḅ)஻_ᙠj0,8olᑁᨵxḄ஺2"ு°Ḅ᝞1,1"_Ḅj0,0lj1,1l,ᙠj0,+8lᑁᓫ஺

92"<°Ḅ᝞2,ᙠ(0,E)ᑁᓫ£x{y{¤¥(l,l)oy=x.y=x^2.y=3y=x2-2-1-2y=xy=x93.ᢣᦪᦪy=ax(a>0,a©1)Ḅx`(-00,+8),ᵫ1x_ᨵaX>0,a°=l,ᡠḄᙠx{Ḅ¬(0,1)஺2a>0ᦪᓫx{Ḅ®¯{¤¥200,a¥l)aḄx`(0,+oo),1a_ᦪ(1,0)஺2a>lᦪᓫy{Ḅ®¯{¤¥

1020geX¾¿ᯠᦪᦪÀÁÂy=lnxo¿ᯠᦪᦪᙠµ¶ᑖ¸¹vᵨᑮḄ஺5.ÄÅᦪÄÅᦪᨵÆÇ/Qy=sinxy=cosxy=tanxy=cotxy=secxy=cscxᙠµ¶ᑖ¸ÄÅᦪḄ¿ÊËXÌ“ÍΔᓫÐ஺Ñ᝞X=19⊤¼XD/ÍÎ(57஺1744.8")஺ᦪy=sinxḄx`(-co,+00),᜻ᦪᕜÕDḄᕜÕᦪᐸ᝞5ᡠ¼஺ᦪcosxḄx`(-co,+oo),ᏔᦪᕜÕD2ᐔḄᕜÕᦪᐸ᝞6ᡠ¼஺Ø|sinx|Wl,|cosx|

11786.ÄÅᦪvÞḄÄÅᦪᨵÆß/Qy=arcsinxy=arccosxy=arctanxy=arccotx*ÂáâÄÅᦪḄᦪxãᩭḄᵫy=sinx,y=cosxᙠx`ᑁᓫr7VXW[——,æ]ᡠsinx,èὃ⇋22,cosx,èὃ⇋xG[0,ᑭìí*ᓫîìᐸᦪïᙠ஺ðᡃ*°ñᦪòñᦪóô_,--

121.ùᔠᦪপy=e",஻=/ফ6==1+v2,v=sinxy=yl+sin?xxQþyuḄᦪf(u),uxḄᦪX⊤ᦪu=?S)ḄḄ᝞XḄ!"#xᡠ%Ḅu#ᦪ&f(u)ᨵᑣy*+u=°(x)ᡂ.*Ḅᦪ0.y=/Ie(x)]5ᦪ67ᵫᦪf(9:u=wS)<ᔠᡂḄ<ᔠᦪ>Ḅ.X,ᐸ@xA.BCDuA.@ECDyA.FCDᡈᦪ஺ᡠI<ᔠᦪJ▭LM@ECDNᐭPᡠ᪀ᡂḄᦪ஺RSTUVWXᦪYZI<ᔠᡂ<ᔠᦪḄ஺[᝞y=arcsinu:u=x2+2LUd<ᔠᡂ<ᔠᦪ஺F.u=x2+2Ḅ(-8,+oo)ᑁḄVW#xᡠ%Ḅu#(Yᜧᡈj3)YUdly=arcsinuᨵS஺y=azrsinM,஻=/+2y=f(u),u=f(y),v=g(ix)y=/{g[g(x)]}<ᔠᦪUuZIᵫ@ECDvZIᨵwxḄ@ECD᝞uஹvஹwஹtjᓽZI}+x~<ᔠᑮᦪ஺ᙠᦪḄᦪ⌕+ᩭὃ⇋⚪ᓽᦪᨵjᦪ(ᡈᓫᦪ)<ᔠᡂḄ[7.<ᔠᦪ(1)[0206]f(x)=lnx,g(x)=e2x+1,ᑣf[g(x)]=஺ூᶧ11000204T┐£⚪¤௃[^]lne2x+l=2x+k/Ig(x)]=ln0T=(2x+l)lne=2x+l஻x)=tanx,g(x)=3(2)[0401]*,ᑣf[g(x)]=oூᶧ11000205T┐£⚪¤௃1tan—«ᖪ஺(ᑗ=tang(x)=tan-4-

13(3)®9906°y=31u=v2,v=tanx,ᑣ<ᔠᦪy=f(x)=ூᶧ11000206T┐£⚪¤௃242=3v=33Xy(4)f(x)Ḅ®1,10°,<ᔠᦪf(KT)Ḅoூᶧ11000207T┐£⚪¤௃®°®0,1°஺1<1OZ<1010°<10x<1010

14m-nm__an=---a=1.ᢣᦪᨵᐵᭆÞTa°=l/a"=à2.ᢣᦪ¶·Îᑣx-yá/âã,(ay=&åভ)*=a"µஹᦪ1.ᦪça°=Nᑣb=logaN(a>O,arl)2.ᦪឋàTlogl=0,loga=l,஺ẑ=N(lnN=N)aae3.ᦪ¶·Îᑣxlog-=logx-logyaaalog(xy)=logax+logayylog/=alogaìῊîïὶ"ñஹᦪᑡ1.jóᦪᑡT*⚗ÍÀan=a1+(n-1)d3²------------yT---------------------u.ön⚗÷ÍÀ222.jØᦪᑡT*⚗ÍÀa=aiqn_1n_"1(1-0”)_©-ü4ý=-------=-------ön⚗÷ÍÀ.9þஹËᵨÚÿᦪ1.ᦪᐵsina+cosa=1tanor+1=secacotc+l=cscasinaCSCa=1cosa-seca=1tancr-cota=1sinacosatanar=----cota=—---cosasina2."#sin2a=2sina-cosacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a3.%&

15.21-cos2a21+cos2asina=---------cosa=---------22'ஹᱯ*Ḅᦪ,-0°30°45°60°90°180°270°360°78ᐕᡃ3%6-02;5T743\V2Ḃsin010-10222V2\cos10-101T22tan01=>ᙠ0=>ᙠ0T@ஹABCḄ☢EFCE1.GᙊIC%=2%J◖=2L2+2M4V=nr2hV=%Rh2.Gᙊ┵C%="◖=#+'(32V=£%ᡝ3.ᳫC$=4+3SஹTUV=tana(aw—)1.TUḄWXY᳛22.TUḄY[M\@]+^*°)3.aTUḄbcFᚖTefaᩩTU4=%h+i,?27=ᔊ"+Fmn1஻?2,ᑣ%=k22.m?11?2qᑣr—*2=-1stu᩽▲Xxyst⁚᩽▲n{|ὃ~⌕

161.h᩽▲Ḅᭆ(᩽▲"£-N'ஹ"£-»'ஹ"e-M"Ḅ=⌕)஺ᦪᙠtᜐḄ᩽▲F᩽▲qhᦪᙠtᜐ᩽▲>ᙠḄᐙᑖ⌕ᩩ஺2.h᩽▲Ḅᨵᐵឋq᩽▲Ḅ¡ᑣ¢£Jᑣ஺3.ᳮV¥¦§ஹV¥ᜧ§ḄᭆqV¥¦§ḄឋஹV¥¦§FV¥ᜧ§Ḅᐵ஺©cV¥¦§▤Ḅ«¬(▤ஹ®▤ஹ▤X¯)஺¢ᵨ¯V¥¦§±ᣚ᩽▲஺4.³´ᵨaµ¶⌕᩽▲᩽▲ḄMJ஺n·⌕f¸ᑁº(t)ᦪᑡḄ᩽▲1.ᦪᑡᢥt½¾᣸ᑡḄV¥ÀµᦪÁ,Â…/q…ÅÁV¥ᦪᑡqÆÅᦪᑡqÇ{Xn},ᦪᑡËÌ•µᦪÅÁᦪᑡḄ⚗qsn⚗X”ÁᦪᑡḄtÐ⚗ᡈÒ⚗qÓ᝞(1)1,3,5,…q(2n-l),...1111t__.•••_•••(2)2'4'8'2*'123nt1_•••(3)2'3'4"+1'1+(t1Ö(4)1,0,1.0,...2,...ூØᶧÚÛ11010101┐Ý⚪ßà௃âãᦪᑡ஺äåḄtÐ⚗ᑖæÁ1n1+(-1)”“(2n-l),2"«+12

17éÌtµG᦮ᦪn,âᨵtµxFëìqᡠ]îᦪᑡXnrïðñ§nḄᦪx=fnnn,äḄòãᐰCG᦮ᦪqôðñ§nõö÷1,2,3…tᑗG᦮ᦪùqìḄᦪ,ú᣸ᑡᡂᦪᑡ஺ᙠ8üᓃᦪᑡXjrïᦪþÿḄ•ᦪᓃḄX].X2,X3,…Xn.…஺2.ᦪᑡḄ᩽▲ᦪUXn,᝞n—ooXn▲ᙢḄ!ᦪA,ᑣ#n$ᜧᦪᑡXn&!ᦪA'᩽▲ᡈ#ᦪᑡᦈ*A,+,lim/=4ᡈx*-ᨴ./—coB12ᔲᑣ#ᦪᑡXn4ᨵ᩽▲᝞ᦪᑡ4ᨵ᩽▲6#ᦪᑡ78ᦣḄ஺ᦪᑡ᩽▲Ḅ:;<=>!ᦪA?ᦪᑡḄ⚗/B2,…/,…ᵨᦪDḄ⊤FGᦪᑡXn&A'᩽▲6⊤Fn$ᜧXnH&▲☠JA,ᓽXnLAMNḄOP|x/A|0஺.Q2ᦪᑡ᩽▲ḄឋSLTUVᑣ1.ᦪᑡ᩽▲ḄឋSᳮ1.1Yឋ2GᦪᑡX0ᦈ*ᑣᐸ᩽▲[\Y஺ᳮ1.2.ᨵ]ឋ2GᦪᑡXnᦈ*ᑣ\ᨵ]஺^<=_ᳮ`aᩭcᡂef67gᨵ]ᦪᑡcᦈ*஺2.ᦪᑡ᩽▲Ḅhᙠjᑣᳮ1.3.k☢ᜳjᑣ2GᦪᑡXn,yn,Znno&pᩩr=1ᓃss."1,2,3…2,limy”=limz”=A.2,limᑍ=Ahill19

18ᳮ1.4GᦪᑡxJᓫxᨵ]ᑣ\ᨵ᩽▲஺3.ᦪᑡ᩽▲ḄyᑣTUᳮ஺᝞limq=Azijlimy*={ᑣᳮ1.5…"ᙢড~”~3ᨴ±3.12ফ.%K2=Q%Q..ᵨ=43rlimxAEmy,#0"-»tavlimy.B3…&z".2ᦪ᩽▲Ḅᭆ1.XTXoᦪfxḄ᩽▲1X—Xof.X2Ḅ᩽▲ᦪf.X2,᝞X▲ᙢXoᦪf.X2▲ᙢ!ᦪA,ᑣ#X-XOᦪfxḄ᩽▲7A,+,hm/(x)=^rAgᡈf.X2—A.X—>Xo2y=f(x)=2x+lx—>1,f(x)—►?ூᶧ11010102=┐⚪௃X<1X—1x…0.90.990.999...—>1y••,2.82.982.998-3x>lx—1

19x—1.11.011.001…71y…3.23,023.002…—3(2)XTXOf(x)Ḅ¡᩽▲ᦪy=f(x),᝞x¤X஺Ḅ¡¦▲ᙢX஺ᦪf(x)▲ᙢ!ᦪA,ᑣ#XTXOᦪf(x)Ḅ¡᩽▲7A,+,lim_f(x)=AJᡈf(xo-O)=A(3)x—xof(x)Ḅ¬᩽▲ᦪf(X),᝞X¤XoḄ¬¦▲ᙢXoᦪf(x)▲ᙢ!ᦪA,ᑣ#x—xoᦪf(x)Ḅ¬᩽▲7A,+,lim/(x)=Aᡈf(xo+O)=Ax+1x<00x=0x-1x>0¯°•/(»,²⛷᝞ᦪூᶧ11010103=┐⚪௃µ=x¤0Ḅ¡¦▲ᙢ0f(x)▲ᙢ!ᦪloᡃ¸#x-0,f(x)Ḅ¡᩽▲71,ᓽᨵlimf(x)lim_(x+1)=1xfCT¹'x¤0Ḅ¬¦▲ᙢ0,f(x)▲ᙢ!ᦪ-1஺ᡃ¸#x-0f(x)Ḅ¬᩽▲7-1,ᓽᨵ⇵¼=%(ᱏ1)=1¿¹X”Àf(x)

20lim_/(x)lim/(x)lim/(x)ÁᯠᦪḄ¡᩽▲-X஺-ஹ¬᩽▲5LᦪḄ᩽▲-%MNᨵ&pᐵÆ=ᳮ1.6XTXOᦪf(x)Ḅ᩽▲ÉAḄ\⌕ᐙᑖᩩr7lim_/(x)=limf(x)-A1X—>X—>0_67g=᝞X-XOᦪf(x)Ḅ᩽▲ÉA,ᑣ\ᨵ¡ஹ¬᩽▲ÎÉA஺lim/(x)=A`M᝞¡ஹ¬᩽▲ÎÉA,ᑣ\ᨵஹ7”஺ᦇ_1஻x)=J(xwl)x-1X-1RX)T?/(x)=Ô1=(x+l)('T)=x+1x#lx-1x-1x—1fifx)—>2ÖV—1olim----=2xf1x-1᱄-1஻X)=J(XKl)ᦪx-l,x-lf(x)Ḅ¡᩽▲72,¬᩽▲f72஺

21Ø22.X-8ᦪf(x)Ḅ᩽▲(1)XTOOᦪf(X)Ḅ᩽▲y=f(x)x8f(x)—>?1_y=f(x)=l+x1X—>00f(x)=l+X—>1Hm(l+—)=119xᦪkf(X),᝞XT8f(X)▲ᙢ!ᦪA,ᑣ#XT8ᦪf(x)Ḅ᩽▲7A,+,lim/(x)=A—8ᡈf()—A(x—co)x(2)X—+8ᦪf(x)Ḅ᩽▲ᦪf(x),᝞XT+OOf(x)▲ᙢ!ᦪA,ᑣ#X—+8ᦪf(x)Ḅ᩽▲7A,+,Þ/(x)=4_Lᦪᑡ᩽▲ḄàáD᪵ᦪᑡ᩽▲Ḅãn+8Ḅn7å᦮ᦪçèᙠ_ãᑣ⌕éᑏëXT+OO,ìᐸãḄxc7å᦮ᦪè'í<îᦪ஺y=f(x)x+oof(x)xï

22/(x)=2+^=21+1x—>+oo,f(x)=2+&->2ñ(2+e”2=ᦪf(x)=2+e",XT+OOf(x)—?ூᶧ11010104┐⚪௃1µ=f(x)=2+e-x=2+&1x—>+co,f(x)=2+2—2hm(2+@”2ᡠ&ᩗ(3)x—ooᦪf(x)Ḅ᩽▲ᦪkf(x),᝞X-8f(x)▲ᙢ!ᦪA,ᑣ#X--8f(x)Ḅ᩽▲7A,+,x⇪yU)=A0X--oof(x)—►?1ᑣf(xù2+6’(x<0)x—>-00,-x—>+81f(xù2+^/^2

23⇪Q+ü=2/W=2+-IL(X<0)=ᦪ71X,X--8f(x)—?ூᶧ11010105┐⚪௃µ=X—8XT+OO஻x)=2+ஹ-=x-2,ᓽᨵýDþX—*00,X+8,X-"00ᦪf(X)᩽▲ḄcÿX—Wf(x)Ḅ᩽▲Aᐙᑖ⌕ᩩXT+OOXT8ᦪf(x)ᨵḄ᩽▲Aof(x)=1+—᝞ᦪX,XT8f(x)▲ᙢᦪ1,XT+00f(X)/(X)=1+—▲ᙢ!ᦪ1,"#$X—00XḄ᩽▲1,%&+—)=1ᐸ()*+᝞,3ᡠ.஺f(x)=l+X

24lim(1+3ifXlim(1+—)=1xy=arctanxlimarctanx="-,limarctanx=——-co2ߟG2limarctanxHIᙠ஺KLᦪy=arctanxᩭN"Oᨵlimarctanx=——•Ko2ᓽSᯠx—fVXXḄ᩽▲IᙠX—+8fVxXḄ᩽▲IᙠKZ[!᩽▲Hᡃ]^_`x-8aarctanxḄ᩽▲HIᙠ஺VbXᦪ᩽▲Ḅcᳮlim/(X)cᳮ1.7VhឋcᳮX᝞j1%Iᙠᑣ᩽▲mch஺cᳮ1.8V[☢ᜳcᳮXpᦪ,“X8஺X“rXᙠstḄu!vwᑁVty◀᜜X|}ᩩ:limg(x)=lim=g(x)

25lim/(x)=A,limg(z)=Bcᳮ1.9᝞jO஺ijlim[/(x)±g(x)]=lim/(x)±limg(x)=A±Blim[/(x)-g(x)]=(lim/(x))(limg(x))=AB(2)lim/(x)/(x)A11m----=---------——limg(x)=3஺0x-»xog(x)limg(x)B(3)1Aᑣyᑮᨵ▲!ᦪḄᦪḄ¡ᨵ¢££lim[^(x)±^(x)±-±/„(x)]=lim¦x)±lim/(x)±-±lim§ব2lim[c©/(%)]=c-Hm/(x)(2)Xf/X->KQlim[/(x)r=[lim/(x)rবXT%ᵨ᩽▲Ḅᑣ᩽▲,®*:Z¯ᑣ⌕°!±²ḄᦪḄ᩽▲Iᙠ,³ᖪḄ᩽▲µ⌕ᑖ¶Ḅ᩽▲H_O·஺¸᜜᩽▲ḄᑣLX-8Ḅ¡¹ᡂ஺(º)»¼½»ᜧ½1.»¼½(¿$»¼)c+ᦪÀ=/(*),᝞jÂýxᙠu!ÃᓄÅÆÇᦪ/s)Ḅ᩽▲O·,ᑣ$ᙠÉÃᓄÅÆÇ,஺)O»¼½Ê%&lim/(x)=O.ᵨÌÍζ᜜/Ï…ᩭ⊤.»¼½஺cᳮ1.10ᦪ/(”)AO᩽▲Ḅ⌕ᐙᑖᩩ

26Ó஺Xy⊤.OA²!»¼½Ô஺lim/%=A<^>fx=A+aaO»¼X*V1X»¼½ýÕH⊤.½Ḅᜧ¼Ö⊤.ýḄÃᓄ×▲O·஺V2X⌕Ø»¼½²Ù¼ḄᦪÚÛÜᑖÝ•!Ù¼Ḅᦪ£ÕÞ¼H»¼½஺V3X!ýᔲO»¼½²ÂýḄÃᓄ×àáᐵḄ஺ᙠHḄÃᓄÅÆÇ!ýyᨵHḄÃᓄ×"#ã£Hä஺᝞.x—>0sinx—>0,cosx—>1ᐔ.«x—>—sinx—>12x78Sinxå₩çèᦣ|sinx|

273.»¼½²»ᜧ½Ḅᐵø»¼½²»ᜧ½Ôùᨵú¿ᓫḄᐵøü¢Ḅcᳮ஺1cᳮL11ᙠÃᓄÅÆÇ᝞jO»ᜧ½ᑣÓVýO»¼½ïþÔ,1᝞jÏVXXO»¼½³/Vxw°,ᑣ§>ᜧ஺ߟ஻ᜧ“ஹ1X-8,/X=-------YX-D78,/x=e-8,/Wᜧ4.Ḅឋឋ1ᨵ▲Ḅ!ᦪ#$%&ឋ2ᨵ'(ᦪ)*Ḅ+,%&ᱯ.ᙢ0*Ḅ+,%஺limx-sin—=0xx->0,-->ooxsin-<1xឋ3ᨵ▲Ḅ+,%஺ឋ4◀2᩽▲45Ḅ)ᡠ7Ḅᖪ%஺5.Ḅ9:

28;<=%>)ᓄ@ABḄᓽ"ma=0,lim/=0஺lim—=0(1)᝞EBᑣG)%9/:J▤ḄLM&="?)&lim—=c#0(2)᝞E0ᑣG&*£>▤Ḅ&lim—=1(3)᝞EBᑣGa*/STLlim—=oo(4)᝞EBᑣG&%9£:UTḄ஺xT0,3x+——>03r4.r2hm±W-=Hm(3+x)=32°x—03/4-r3clim-----------=lim(3x+/)=0-oxx->0x+x.."ஹlim--------=lim(l+x)=1x->0xA->0x+z2x(x—0)ST!ᣚ;ᳮ[᝞E\(x->8),aNa'£'ᙳ^ᨵaa'£0',_da..a!lrim--lim—=hm——B2%BHQ᜛aᙠᑣn~8)oa/"cᙳ

29^ᨵa2£᜛a_aa!Fde/7f=limlimlimJaB0d—lim—᜛gឋ00hᵨᙠ᩽▲jkBlmnᑮpᓄjkḄMᵨ஺q%rstu[ST!ᣚv2ᙠ᩽▲Ḅ+◀jkBhᵨ஺0ᵨḄST!ᣚᨵ[X->0\sinxx;tanx;arctanxx;arcsinxx;1-cosx——;ln(l+%)~%;--+x-1(x)yz⌕᩽▲1.z⌕᩽▲Iz⌕᩽▲I%ᢣ}☢Ḅ᩽▲..sinx-..tanx..arcsinx“lim------=1lim-------=1lim-----------=1xfox,x-»0x,x->0x

30tanxsinx1lim------=lim-------goxQOxcosxsinx1v=hm-------hm-------K->0xKTOCOSx=1..arcsinx«,lim-----------=1—0x᜛rsinx=2sin/=xXT0,tT0arcsinxt.1«,hm-----------=lim———=h1m-------=1x->0xt-»osintt->0tsin/0gz⌕ᵨlv2k(ᦪḄ6Ḅ᩽▲⚪஺ᐸ᪀[hm=1x)TdW(X)X->1x-lsin(x2-1)=(x+1)-sin(x2-1)lim-------------=lim------------------------3x-13(x+l)(x-l)sin(x2-1)Qi)/sin(x-1)=lim(x+1)lim——W-------=233(x-l)2.z⌕᩽▲H

31z⌕᩽▲௃ூ%ᢣ}☢Ḅ:lim(l+-)n=en-»8nlim(1+—)x=ex-»oox1lim(l+t)*=et->0ᐸBe%0ᦪ(0ᦪ)ᯠᦪḄlḄe=2.718281828495045.......ᐸ᪀[1lim(l+.(x))°C)=e0z⌕᩽▲i%6Ḅ;z⌕᩽▲II%“¡”Ḅ;\gyz⌕᩽▲ᙠ᩽▲kBnz⌕ḄMᵨ£¤¥¦l§%¨0r⌕Ḅ஺(©)᩽▲Ḅª«[1.ᑭᵨ᩽▲Ḅᑣjk«ᑣ᩽▲&2.ᑭᵨyz⌕᩽▲᩽▲&3.ᑭᵨḄឋ᩽▲&4.ᑭᵨ(ᦪḄ®¯ឋ᩽▲&5.ᑭᵨ°r±«ᑣ;Ḅ᩽▲&6.ᑭᵨST!ᣚ;ᳮ᩽▲஺᩽▲(1)lime=climx=XQ(2)x7ᓽ

32lim—=0(3)r—8xlim(ax2+/x'T-t-axn~'2+---a)02n(4)282n-1w-2-^Oxo+<31XO+a2x0------1■%¿LḄᨵᐵᭆÃ1Å9601È}ᑡ)ᙠÊ;)ᓄ@ABḄ%sin—(x—>0)A.xBeX(xTO)ln(l+x2)(x^O)cᵪ2ூÖᶧØÙ11010301[┐Û⚪Ü௃ÅÖÈCx->0,--»oo,sin-A.xxàᦣ1_1-xB.x—>0,---->-oo,&—>0x1x—>0+,-->-Hx),ex->+oox

33x-3x-31”3)eD.Q=(X+3)("3)=x+30(2)Å0202Èx-0\ஹã1+»*x9:%A.J▤ḄB.STḄC.¨STḄ>▤D.U▤ḄூÖᶧØÙ11010302[┐Û⚪Ü௃ÅÖÈBå:x-OjnQ+x)**%x-»0,ln(l+x)-xln(l+x)1lrim---------=hm-InQ+x)஺x(Jx=limln(l+x)x=ln[lim(l+x)x]0஺=Ine=1᩽▲Ḅjk[[0611]஺x+1ூÖᶧØÙ11010303[┐Û⚪Ü௃2=lim(x2+3x-l)2c..x2+3x-l.n02+30-lhm------------=r---------------=--------------r->0x+1lim(x+l)0+1å[0

34ÅÖᫀì10¿2.6íᑖåïᑖ᩽▲+x-6lim——z-----(1)Å0208ÈX—2--4ூÖᶧØÙ11010304[┐Û⚪Ü௃5ÅÖÈ,..”+ò6(x+3)(x-2)..x+35lim——z-----=lim-------------=hm-----=—å.rf2x2-4r72(x+2)(x-2)x->2x+24■r2r9..X-x/lim——------(2)Å0621ÈkX—2x-4ூÖᶧØÙ11010305[┐Û⚪Ü௃òö-2=.(x-2)(x+l)=2å.x->2x—4x->2(x—2)(x4-2)43ÅÖ"o¿3.0ᨵᳮᓄïᑖ᩽▲hm÷W(1)Å0316Èkò722ூÖᶧØÙ11010306[┐Û⚪Ü௃1ÅÖÈ2≵

35hmúû=limåx-2r->2(x-2)(jx+j2)x-2,.1=lim-------=----=-=hm-==-r->2(x-2)(y/x+)x72(ü+)1~2^2V27n-3hm(2)Å9516ý4"-2-0ூÖᶧØÙ11010307[┐Û⚪Ü௃⌳ÅÖÈ3ÿT+1+3)(7^+0)1J-\>=1im/?//.r->4(2-J2)(j2x+1+3)(Jx-2+J2)..2(-4)(Jx-2+=lim---------7-----------Tf4(x-4)(j2x+l+3)1.23x—2+->/2)=hm---==-----4(J2x+1+3)_4!_20"#00$4.%%78()8*Ḅ᩽▲..X2-1lim—z----=_______.(1)[0308]X-83/+Xூ4ᶧ67110103088┐:;⚪=>௃@ᙢBᨵ

36o(«rn).hm(1--Uf'/Jhm(3+W3r->oox1X4Y5$5.ᵨZ⌕᩽▲X)᩽▲Qsinx11^sin(w(x))hm----=1hm---------=1x~o'0(x)-00(x)xa1b[9603]Fᑡ᩽▲g,ᡂiḄj..sinx2,hm-----=1A.—஺xtanxlim1B.—oXHmp=1C.xfOx2D.X78Xூ4ᶧ67110103098┐:;⚪=>௃X4YB..sin(x-l)11m—y--------=(2)X0006Y—lx+5x-6

37ூ4ᶧ6711010310┐:;⚪=>௃X4ᶭsin(x-l)sin(x-l)sin(x-l)1hmߟ5----------=hm----------------=.^->1x+5x-6x-»l(x+6)(x-l)x-1x+6x-x—1x->lx+6~7$6.ᵨZ⌕᩽▲II)᩽▲1-lim(1+-)=%lim(l+x)x=&,Q8x—01Hm(1+--/W=e,hm(l+.x))஺ಘẆ>)->80(X)2hm(1+5(1)$0416%vw28xூ4ᶧ6711010311┐:;⚪=>௃X4J?22—=/,X=-X᪆Y8zXtX-8/ߟ0

382!'(=hm(1+i)B=+)21[lim(l+zy]2=e2f->0£X'("lim[(1+-)2]2=[H(i+2)2]2m~8x-x»XX=7hm(l+3+=eab28Xblim(l+ax)x=eabx-»01-hm(1--L)B=e2[0306]-82x2lim(l+x)x-e2[0601]XT஺hm(—)3x(2)[0118]vw-8xூ4ᶧ6711010312┐:;⚪=>௃[4]e'(=Hm(1B+=/8f0*

39$7.ᵨᦪḄឋ)᩽▲limln(l+x2)______[0407]…ூ4ᶧ6711010313┐:;⚪=>௃[4]0limln(l+x2)2>஺/(%)=ln(l+?)D(/)=(-oo,4oo)limln(l+x2)=ln(l+02)=00$8.ᵨᣚᳮ)᩽▲Q1-cosxlim------------[0317f°x+sinxூ4ᶧ6711010314┐:;⚪=>௃[4]0/A1x—>0,1-COSX:%2=lim——2-----------limߟ+—=0xTOx+smx2x->0«anx1+------x$9.)ᑖᦪᙠᑖᜐḄ᩽▲f2x4-1,x<0/(x)=<[ln(l+x),x>0(1)[0307]ᑣ/Xᙠx=0Ḅ᩽▲2/*=ூ4ᶧ6711010315┐:;⚪=>௃

40/(0-0)=lim/(x)lim(2x4-1)=1X᪆YI஺-/(0+0)=lim/(x)=limln(l+x)=0x—஺+x->0+x2+l,x<0/0)=0,ᑣ/ব=(2)0406ூ4ᶧ67110103168┐:;⚪=>௃X4Y1/(0-0)=limf(x)=lim+1)=1X᪆Yߟ0-10-/(0+0)=lim/(x)=limcosx=1x-»0+xT)+v/(0-0)=/(0+0)=l8.lim/(%)=1x-»0$10.)᩽▲Ḅ>⚪Q/+¡+6.lim--------------=5,(1)¢£.11¤ᑣ¥ᦪூ4ᶧ67110103178┐:;⚪=>௃lim(x24-/tx4-6)=0.,.._X᪆Y¦8,ᓽ1++6=0,¨©~7¦.Cx+H+6=(x-l)(x+ª)=¤+(jn-Y)x-mk¨X—«=6¨¬~7.

41¦8(®¯°¦ᑣ)Q/+H+6_2x+k,lim----------=lim------=5,1-x3-1ᓽ—(2+W=5,¨=7..x2+ax+blim-----z----=3,ফ²xfsin(xT))&bḄµ.ூ4ᶧ67110103188┐:;⚪=>௃0X᪆Y6*¶.%xߟ1(Bsin(x2-1)-x2-1zX2+ax+ᓰ=(x-l)(x+w)Qx1+ax+BQ(x-l)(x+w)1+¹c11m----------=lim-------------=-----=3»jXT௃sin(¤—1)(%—l)(x+1)1+1,=5ᓽ/+ax+b=(x-l)(x+5)=X2+4X-5ᡠ½½=4»=-5.sinax—.hm-----=3,a=3[0402¾xூ4ᶧ67110103198┐:;⚪=>௃(x+lim8[0017]^00^-2^ᑣ¿=(4:ln2)ூ4ᶧ67110103208┐:;⚪=>௃

42x(1+À/limIx+k=limÁ____Ãx-2k178Â"JX᪆YXJ=83A:=In8=In23=3In2jt=In2Ä☢ᡃÇÈḄᑁÊ:᩽▲ḄᭆÌÍ᩽▲ḄឋÎÍ᩽▲ḄÏw¦ᑣÍÐÑZ⌕᩽▲ÍÒஹᜧÒḄᭆÌÍÒḄឋνÕÒ▤Ḅ×Ø஺Ù~⁚ᦪḄឋXÛÜὃÞ⌕)Y1.ᳮᦪᙠᜐWßàḄᭆÌBᳮᦪᙠᜐW᩽▲áᙠâßḄᐵäBåæᑨàᦪ(èᑖᦪ)ᙠᜐឋḄé¦஺2.ê)ᦪḄßà஺3.åæᙠëìßᦪḄឋÎêᵨíÇîïðñᓫó⚪஺4.ᳮôᦪᙠᐸöìßḄឋBêᑭᵨᦪឋ)᩽▲஺Xø⌕£ùᑁÊY(-)ᦪḄᭆÌ1.ᦪᙠXoᜐö1ᦪ¾f(x)ᙠXoḄúÑûüᑁᨵöB᝞ý%þÿḄᦋ*(X஺)0ḄᦪḄᦋ0,ᓽ0ᡠ°ᡈ4$/(5+6%)-/(5)%=0ᑣᦪf(X)ᙠXoᜐ"#஺ᦪy=f(x)ᙠXo"#()᝞+,-.,-20ᦪ1f(x)ᙠxoḄ2345ᑁᨵ,-᝞89x-xoᦪy=f(x)Ḅ᩽▲=ᙠ>?X஺ᜐḄᦪf(X஺)ᓽ,-30ᦪy=f(x),᝞8AAᑣᦪf(x)ᙠX஺ᜐB"#C᝞8DE/(x)=/(%),ᑣᦪf(x)ᙠᙳᜐI"#஺ᵫKL,-2(M᝞8ᦪy=f(x)ᙠxoᜐ"#ᑣf(x)ᙠXoᜐB"#I"#஺2.ᦪᙠOPQa,bTK"#

43,-᝞8ᦪf(x)ᙠUOPQa,bTKḄVWXᜐX"#ᑣf(X)ᙠUOPQa,bTK"#,Yf(x)Qa,bTKḄ"#ᦪ஺Z[f(x)ᙠB\a"#]ᢣ_`ᐵb.AᙠI\b"#]ᢣ_`ᐵb.Ac**=ᓽf(x)ᙠB\aᜐ]I"#ᙠI\bᜐ]B"#஺(def.?ᦪᙠᐸ,-ḄOPᑁX"#஺3.ᦪḄPh,-᝞8ᦪf(x)ᙠX஺ᜐi"#ᑣX஺f(x)W3Ph஺ᵫᦪᙠ2"#Ḅ,-(Mjf(x)ᙠX஺ᜐᨵ+ᑡlmnopW.(1)ᙠX஺ᜐf(x)rᨵ,-C(2)ᙠX஺ᜐf(x)Ḅ᩽▲i=ᙠC(3)sᯠᙠX஺ᜐf(x)ᨵ,->ᔛv"=ᙠxᑣXo]f(X)W3Ph஺?-1,x(0/(x)=

44A.O1B.41_C.ID.2ூᶧ11010402.┐⚪௃ᑖ᪆.f(0)=klimf(x)=lim>'+)--x-»ox->ox(Jx+4-2)Cx/x+4+2)v=lim--------==-------x(Jx+4+2)x1=lrim--==——=—…x(Jx+4+2)4/(0)=lim/(x)x-rUD*=L4QᫀTBx<0|3Q0209T04+Xv°ᙠX=0ᜐ"#ᑣ2=ூᶧ11010403.┐⚪௃.f(0)=e°=l/(0-0)=Em/(x)=limd=1x-»0-x->0"/(0+0)=lim/(x)=lim(a+x)=aVf(0)=f(0-0)=f(0+0)a=lQᫀT1(-)ᦪᙠWᜐ"#ḄឋᵫᦪḄ"#ឋ]®¯᩽▲ᩭ,-Ḅ±²ᵫ᩽▲Ḅ³´µᑣ(d¶ᑮ+ᑡ"#ᦪḄឋ஺,ᳮ1.12(¹ᑣ³´)0ᦪf(x),g(x)ᙠxoᜐᙳ"#ᑣ(1)f(x)±g(x)ᙠXoᜐ"#(2)f(x)-g(x)ᙠxoᜐ"#/(x)(3)jg(x)¼ᑣgCOᙠxoᜐ"#஺0,ᳮ1.13(½ᔠᦪḄ"#ឋ)0ᦪu=g(x)ᙠx=x()ᜐ"#y=f(u)ᙠu()=g(x)ᜐ"#ᑣ½ᔠᦪy=fQg(x)Tᙠ*=*()ᜐ"#஺0ᙠÀ½ᔠᦪḄ᩽▲,᝞8u=g(x),ᙠxᜐ᩽▲=ᙠÁf(u)ᙠḄồ=!Äg("0ᜐ"#ᑣ᩽▲Å(dÆᦪÅÇᣚ஺ᓽ

45%/Ig(x)T=/R)I0/IJimg(x)T=f(%)/Qg(x)T=/Qlimg(x)T=/(«,)),31.14(ÊËḄ"#ឋ)0ᦪy=f(x)ᙠ2OPK"#>ÌÍᓫÏÐÑ(ᡈÌÍᓫÏÓÔ)ᑣÕḄÊᦪx=J(y)ᙠOPK"#>ÌÍᓫÏÐÑ(ᡈÌÍᓫÏÓÔ)஺(l)UOPK"#ᦪḄឋᙠUOPQa,bTK"#Ḅᦪf(x),ᨵd+Ö3×ØឋZÙឋdÚX⌕ᵨᑮ஺,ᳮ1.15(ᨵÝឋ,ᳮ)᝞8ᦪf(x)ᙠUOPQa,bTK"#ᑣf(x)ÞᙠQa,bTKᨵÝ.,ᳮ1.16(ᨬᜧ¼ᨬâ,ᳮ)᝞8ᦪf(x)ᙠUOPQa,bTK"#ᑣᙠZ3OPKW,=ᙠᨬᜧ¼ᨬâ஺,ᳮ1.17(ã,ᳮ)᝞8ᦪf(x)ᙠUOPQa,bTK"#>ᐸᨬᜧ¼ᨬâᑖäM¼m,ᑣãm¼MpPḄæçèᦪC,ᙠQa,bTKéÔ=ᙠW3஺ê¶f(4)=Cëì(í,ᳮ)᝞8ᦪf(x)ᙠUOPQa,bTK"#>f(a)Æf(b)î,ᑣᙠQa,bTᑁéÔ=ᙠW3ïê¶f(&)=0(¹)?ᦪḄ"#ឋñᦪᙠWᜐ"#Ḅ,ᳮM,"#ᦪò¯ᨵ▲ó¹ᑣ³´ᡈ½ᔠ³´²¶Ḅᦪᙠᐸ,-ḄOPᑁ]"#ᦪ஺Áᵫ×Ø?ᦪᙠᐸ,-OPᑁ]"#Ḅ(d¶ᑮ+ᑡô⌕õì஺,ᳮ1.18?ᦪᙠᐸ,-ḄOPᑁ"#஺ᑭᵨ?ᦪ"#ឋḄõì(M.᝞8f(x)]?ᦪ>X஺],-OPᑁḄᑣ

46f(x)ᙠXoᜐ"#᯿9প=7;)%ø]ùÀ?ᦪᙠ,-OPᑁ2ᜐḄ᩽▲ú⌕´ûᦪᙠḄᦪᓽ(஺[0407]limln(l+x2)=ln(l+02)=0ூᶧ11010404.┐⚪௃[0611]..x1+3x-1lim---------=_…x+1ᙠ(-co,-1)u(T,+co)ᑁ>?ᙠx=0ᜐA?..x2+3x-l02+3x0-1,1im-------=-----------=-1*~஺x+10+ூᶧ11010405┐⚪!௃#1.%&'()ᦪ+,x3-5x+l=Oᙠ/0(0,1)ᑁ23ᨵ567᪷.ூᶧ11010406┐⚪!௃%:f(x)=X3-5X+1f(x)ᙠ[0,1]?@Af(0)=1f(1)=-3ᵫCDEᳮGHI23Jᙠ5D&G(0,1)MNf«)=0,3-5&+1=0ᓽ+,ᙠ(0,1)ᑁ23ᨵ567᪷஺RSTUVᦪஹ᩽▲Z@A[\]ᑖ_ᨬaRஹᨬb⌕Ḅᭆfg5Ih᩽▲ijk[\]ᑖḄ'ᜧij_ᨬaRḄijg5ImnopqrIstuvwḄxyᡭ{|}ḄaẠ஺s5SḄᑁᙠὃ_ᓰ15%,u22ᑖ஺RSḄ⌕ᑁU᝞E5ஹᭆfᑖbD᩽▲ᭆfITZTḄᭆfI@AḄᭆf஺᩽▲ᭆf&᩽▲[ᙠEᓄ,_VᦪᓄḄឋ᝱I᩽▲[56EḄᦪ஺Vᦪᙠ5D@AឋḄ'6aR⌕¡(1)f(X)ᙠDXoᨵE¢஺(2)Ḙ/ಘJᙠ஺

47T¦/(§=/(4)kJ)«->*&oᵨḄ[f(x()-0)=f(xo+0)=f(Xo)o¦ஹijᑖbD᩽▲IVᦪḄD@AឋḄᑨE஺1.Vᦪ᩽▲Ḅᵨ+¯⌕ᨵ(1)ᑭᵨ᩽▲Ḅ±ᑣij¯ᑣ᩽▲³0´ᕽII¶·E¸IGὃ⇋ᵨº¸ᑖ»ᡈᨵᳮᓄ½¾Cº¿¯஺(2)ᑭᵨÀ6b⌕᩽▲᩽▲³11m^^=1lim(l+—)*=eX*T9x(3)ᑭᵨTḄឋÃ᩽▲³(4)ᑭᵨVᦪḄ@Aឋ᩽▲Äf(x)ᙠX஺ᜐ@AIÆÇÈ(5)ᑭᵨT)ᣚEᳮ᩽▲³(6)tᑖÊVᦪᙠᑖÊDᜐḄ᩽▲³(7)ᑭᵨÌmͯᑣÎE¸Ḅ᩽▲஺2.ᑨEVᦪḄ@AឋIᑭᵨÏ/0?@AVᦪḄCDEᳮ%&+,Ḅ᪷ḄJᙠឋ஺ЦS5ᐗVᦪ\ᑖxÐ5⁚ÓᦪZ\ᑖÔÕyὃ⌕Ö1.ᳮ»ÓᦪḄᭆf×ᐸÙÚÛ¢IÜ»GÓឋZ@AឋḄᐵÞItᵨE¢Vᦪᙠ5DᜐḄÓᦪ஺2.tßà?5DᜐḄᑗà+,Z¯à+,஺3.opqrÓᦪḄaRâ¸ஹ±ᑣij¯ᑣv×ÕᔠVᦪḄÓ+¯஺4.qr◚VᦪḄÓ¯ZᦪÓ¯஺tᑖÊVᦪḄÓᦪ஺5.Ü»å▤ÓᦪḄᭆf஺tçᓫVᦪḄå▤Óᦪ஺6.ᳮ»\ᑖḄᭆfIqr\ᑖ¯ᑣIÜ»G\éGÓḄᐵÞItVᦪḄ5▤\ᑖ஺Ô⌕HêᑁÖ(-)ÓᦪḄᭆf1.ÓᦪḄE¢E¢:Vᦪëf(x)ᙠDX஺ḄìíîᑁᨵE¢IïðXᙠX஺ᜐñNᦋóIVᦪkf(x)ñNôḄᦋõyMk(x+Ax)-f(x),᝞ùï5OBûIVᦪḄᦋ00õyZðḄᦋAxgüḄ᩽▲

48limᒹ=1È&1þ¦ÿgoAxFOAxᙠᑣ᩽▲ᦪfxᙠXoᜐḄᦪᦪᡝfXᙠXOᜐ/1#$y,|fᓾfᡈ*”ᓽ/(%+ᦑ)-/(%)=ᡠ678/(%)=1AxfX-%ᑭᵨᦪ;<=ᦪḄ>⚪@AB1=CDEF=£xo+Ax-fxoEy_—o+Ax-/J2LMAxAx7ᒹ=Hm/%+ஹ-஻J3T᩽▲2஺AxEOAxAyWᦪ᝞Y*EXT஺D[\Ḅ᩽▲ᙠᑣ᩽▲ᦪfxᙠX஺ᜐḄWᦪ,F.x,ᓽ0/'_x=ltmb=HmKL-00ar-MTAxfTO-AXAygᦪ᝞Y*Ex-O,[hḄ᩽▲ᙠᑣ᩽▲ᦪfxᙠX஺ᜐḄgᦪiX0,ᓽ/jx=limb=hm/a+M-g஺0AXTO.AXarTOfAx᝞YᦪfxᙠXoᜐmᯠ⌕=ᙠWᦪpgᦪqᙠrstuvwᡂy஺ᦪ7zᙢ|}~a,bᑁḄ7x,ᦪfXqᨵᦪfXᙠa,b~a,bᑁḄ7xᨵ7ᦪfX,ᦪxḄᦪᦪᦪ஺f\ᦪᦪ/1«$dxax2.ᦪḄ<}Ḅ¡y=fx,ᑣᵫᦪḄ;<£ᦪy=fxᙠ¤X஺ᜐḄᦪPX஺¦ḄMx,yᜐᑗḄ¨᳛ª00/'X=lim—=tanaa¬—ᓽ"DAX'2

49ᵫḄ¨°¡᧕£f(x)¦ḄM(xo,y)ᜐḄᑗ¡0y-yo=f(xo)(x—xo)3.²³´Ḅᐵ¶;ᳮ2.1᝞Yᦪ¸f(x)ᙠXoᜐᑣ¹ᙠXoᜐº;³´஺ᵫ»;ᳮ£B¼ᦪf(x)ᙠX஺½³´ᑣf(x)ᙠXoᜐº;½஺(x(0)y=/À=|Á=¾:(x>0)ூÃᶧÅÆ11020101┐~È⚪ÉÊ௃f(x)ᙠx=0ᜐ³´஺¸(Æ)=ÌÍÎ=mÏ+f)7Ï)11AX-JOAX/Ð=Rmঞ7®)gox-Ñ3/8)(0)=%x-0-X-0v=lim--------=-1Òx-0Óx-0x-0r=lim------=1x->o*x-0Vf.(O)^f'(O)+r.f(x)=IxIᙠx=oᜐ½(×)Ḅᑗ¡ØÙ¡¼ᦪf(x)ᙠXoᜐÚᦪḄ<£F(Xo)⊤ÜݦM(Xo,y)Ḅᑗ¨᳛஺ᡠfݦM(xo,y0)Ḅᑗ¡0y-y=f(x)(x-xo)oo¼f(x஺)ᙠr½tÞᑣÝM(xo,y)ḄÙ¡0

50y-ß7àg")Hmá)7/3)=|¾lâ9704æ}ᦪf(x)çèmoxᑣf(0)=ூÃᶧÅÆ11020102B┐~È⚪ÉÊ௃>BlimXT஺x/(2x)-/(0)-limXTOx=-21imXTO2x-0-2/1(0)-2/'(0)=b/'(0)=-iâÃæ5Em/(ê+2%)-/(ê)¾2â0303æë£ᦪf(x)ᙠx«ᜐrf(xo)=2,ᑣht()A.OB.lC.2D.4ூÃᶧÅÆ11020103B┐~È⚪ÉÊ௃>Bf(x)ᙠXoᜐf(x)=20lim”Æ+2î7^h~-m/(%+2ïð)2117I஺W=2/1(஽)=2x2=4âÃæDᦪḄ<¾3â0410æòóᙠ(0,1)ᜐḄᑗḄ¨᳛k.ூÃᶧÅÆ11020104B┐~È⚪ÉÊ௃â>᪆æö6⚪÷⌕ὃùᑭᵨᦪḄ<çᑖ4ᑖ஺y'=(e'*)'=-e'*>û=ü'|*“="=-1¾2â0616y=x3-xᙠ(1,0)ᜐḄᑗ.ூᶧ11020105┐!"⚪$%௃'y'=3x2-ly'I=i=2xy-0=2(x-l)ᑗy=2(x-l),y=2(x-l)-3,9920ᙠ/=&123Mo,67MoḄᑗ89:;x-2y+5=0,=27

51MoḄᑗ>?஺ூᶧ11020106┐!"⚪$%௃,'᪆BC⚪D⌕ὃGᑭᵨJᦪLMNO2Ḅᑗ>?PQᑖ6ᑖ஺SM(x,y)o00TUV஺=W11,.X32%1Y31_1ᦑᑗ2-5,ᓽx-2y+l=0?y-l=-2(x-1),ᓽ2x+y-3=0(\)JᦪḄ]^1._B`abᦪḄJᦪcd(1)(C)'=0(2)(x")-1ᑁf)(ߟ)'=--4-(3)2N(4)x7(5)(ax)—axlna(a>O,a^l)(6)(ex)-ex(logx)'=lloge=-1-^)0,Qnx)'=laa(7)xxlna(8)x(9)(sinx)gcosx(10)(cosx)--sinxft3nx)=—x—=sec'x(cotx)1=——:—«—=—(11)cos2x(12)sin2x(13)(secx)-secxtanx(14)(cscx)--cscxcotx(arcanx)1=—==(arccosx)'=--==(15)Jl-/(16)J1—-(arctanx)'=—h(arccotx)'=--h(17)1+N(18)1+x22.JᦪḄiᑣk^?ᑣSu=u(x),v=v(x)ᙳxḄmJbᦪPᑣᨵ(1)(u±v)'=u'ov'(2)(u-v)-u^v+uv,(3)(cu)'=cu'(4)(6)(u-vw)-u,vw+uv,w-l-uvw,3.pᔠbᦪ2J?ᑣ᝞su=(p(x)ᙠxᜐmJPty=f(u)ᙠuvḄu=(p(x)ᜐmJPᑣpᔠbᦪy=f(p(x)ᙠxᜐmJPwᐸJᦪ

52axauaxyᳮP᝞sy=f(u),u=(p(v),v=v(x),ᑣpᔠbᦪf[(P(V(x))]ḄJᦪ=/'(«)-P,M3=•axduavax4.bᦪ2J?ᑣ᝞sx=q>(y)ᓫmJbᦪPᑣᐸbᦪy=f(x)ḄJᦪ-I,0008Sbᦪf(x)=sin2+x2+2\2y\ூᶧ11020201┐!"⚪$%௃,'᪆BC⚪D⌕ὃGJᦪḄiᑣk^2pᔠbᦪḄJᦪ஺Qᑖ4ᑖ஺f(x)=(sin2+x2+2x)'=2x+2xln2-2,0602Sbᦪy=e2x+5,ᑣy'=ூᶧ11020202┐!"⚪$%௃y'=(e2x+5)'=e2x.(2x),=2e2x-3[9419]SbᦪV=Jl+#+ln85+27ூᶧ11020203┐!"⚪$%1,'᪆BC⚪D⌕ὃGJᦪḄiᑣk^2pᔠbᦪḄJᦪ஺Qᑖ5ᑖ஺,1-1s,Xsinxx.zy=—==•2%+----(COSX)=------=3£x2J1+/COSXVl+X2COSTJ1+/-4,9712Sbᦪf(x)=(1+x2)arctanx,2©(0)஺ூᶧ11020204┐!"⚪$%௃,'᪆BC⚪D⌕ὃGJᦪḄiᑣk^2pᔠbᦪḄJᦪ஺Qᑖ5ᑖ஺f(x)=(1+x2)'arctanx+(1+x2)(arctanx)'212xarctanx+(1+x=2xarctanx+lf(0)=1_cosx-5,0122SbᦪI-x'-l,2yPூᶧ11020205┐!"⚪$%௃,'᪆BC⚪D⌕ὃGJᦪḄiᑣk^2pᔠbᦪḄJᦪ஺Qᑖ6ᑖ஺,(COSX)'-(x2-1)-COSJT(ª-1)'y-------------------------------------_-sinx(x2-1)-8sx•2x-6,9809Sbᦪ/=$1!1(xD,°Uy=ூᶧ11020206┐!"⚪$%௃,'᪆BC⚪D⌕ὃGpᔠbᦪ2J஺Qᑖ4ᑖ஺

53'?3y=sinu,u—sinv,v=x=cosy1=-V_dydudvdxdudvdx=cosu--3x2=-eosinx3VX'?hy=cosln(/)[ln(/)r=cosln(V).3(Vy=cosln(N)p3/3=Ecosing)x-7[0010]Sbᦪy=lnarcsin²Pᑣy=.ூᶧ11020207┐!"⚪$%௃['᪆]BC⚪D⌕ὃGpᔠbᦪ2J஺Qᑖ4ᑖ஺y'=_Lj=(arcsin³),arcsin-V^---------]—--i1.(´rarcsin"P-(QR•arcsin³.-80223Sbᦪf(x)=e*,g(x)=sinx,wy=fg'(x),2µrூᶧ11020208┐!"⚪$%௃,'᪆BC⚪D⌕ὃGpᔠbᦪ2J஺Qᑖ7ᑖ஺¶g'(x)=cosx,ᡠ¸y=f(cosx)=ecosx,-9,᪵⚪23Sbᦪºe-smxு,ᐸ¼f(u)mJP2᜜ூᶧ11020209┐!"⚪$%௃,'᪆BC⚪D⌕ὃGpᔠbᦪ2J஺Qᑖ8ᑖ஺

54yP=e*ᵫ¿"(sin2Ẇ=ZsM2*)/'(sin2x)(sin2x),=e"*2")j'(sin2x)cos2x(2x),=f(sn2x)./Qin2x)2cos2xe-100318Sbᦪy=6+7,2yPூᶧ11020210┐!"⚪$%௃,'᪆BC⚪D⌕ὃGpᔠbᦪ2J஺Qᑖ6ᑖ஺y^—i=(x+«)=—=஺S1f+124+W2Tx+&2jxx2+xy/x-110420Sbᦪf(cosx)=l+cos3x,2f(x)ூᶧ11020211┐!"⚪$%௃,'᪆BC⚪D⌕ὃGpᔠbᦪ2J஺Qᑖ6ᑖ஺Scosx=t,ᑣf(t)=l+t3,ᓽf(x)=l+x3,ᡠ¸f(x)=3x2-12Sf(cosx)=sin2x,2f(x)ூᶧ11020212┐!"⚪$%௃f(cosx)=l-cos2xÁcosx=tf(t)=l-t2f(x)=l-x2f(x)=-2x-13Sf3)=l+ex+e2x,2f(x)ூᶧ11020213┐!"⚪$%௃f(ex)=l+ex+(ex)2f(x)=l+x+x2f(x)=l+2x5.ᑖÂbᦪḄJᦪ1n(l+x)_Kx«0/(x)=1-14ÃÄsinxx>0ᙠx=0ᜐḄJᦪ஺ூᶧ11020214┐!"⚪$%௃'f(0)=0µ(0)=1"ব7(஺)/3XT஺-X—0KT஺-X11=limln(l+x)“=lnlim(l+x)”KT஺-XT0~=Ine=1

55Æ(0)=.Ç1®=.ᔳ+XTO+X-010+X=1'(0)=7Ê'(0)=1Ë0)=1(i)2J?1.◚bᦪ2J-19919Sºy(x)ᵫy3=x+arccos(xy)ÍÎP2dx஺ூᶧ11020301┐!"⚪$%௃,'᪆BC⚪D⌕ὃG◚bᦪ2J஺Qᑖ6ᑖ஺ÏÐyÑ!x2JPÒ3y2y'=l--j=^=cT+`)7K-3)2(3,<-(zy)2+x)y'=<-(Ṻ)2-yᑣyP=+₹-y_3/J1-ಘ)2+xØ=y,=13)2-yC3y2jl-(xy)2+x-29520Sy=y(x)ᵫex—ey=sin(xy)ᡠÍÎP2yḄJᦪyᙠx=0ᜐḄJᦪÙPlÚoூᶧ11020302┐!"⚪$%௃,'᪆BC⚪D⌕ὃG◚bᦪ2J஺Qᑖ7ᑖ஺ÏÐyÑ!x2JPÒe*-e>/=cosÜ)8+9')ey+xcos(XÝJ/=ex-ycos(xy).y,=©x-ycos(»)ey+xcos(xy)Þx=0ÑPßᐭᡠáPᓽe°-ey=sinO,Wy=0I_â-ãcos(ä)eP+xcos()k஺P)2.!ᦪ2J?-19621Sbᦪy=(Inx)'P2y'ூᶧ11020303┐!"⚪$%௃,'᪆BC⚪D⌕ὃG!ᦪ2J?஺Qᑖ5ᑖ஺adÏÐyÑæçᯠ!ᦪPÒ

56Iny=xIn(Inx)adÏÐyÑ!x2JPÒ—y=ln(ln+x-—•—=ln(lnx)d-yInxxInxᡠ¸(Inx)Tln(lnx)+——]Inx-2,0123Sbᦪë=sinX+X2y'஺ூᶧ11020304┐!"⚪$%௃,'᪆BC⚪D⌕ὃG!ᦪ2J?஺Qᑖ7ᑖ஺'Á/=ë171=sinx,y=2y'=yf+ìM=COSXIn72=6Inx11---Vn=——=lnX+------2mxy”Ê(lnx+2)—2-yJX1ny'=cosx+—=-(lnx+2).x7(ï)ð▤JᦪÎO᝞sbᦪy=f(x)ḄJᦪf'(x)ᙠxmJPòóf(x)ḄJᦪbᦪy=f(x)d2yd2fy"4"(x),TT-Ḅh▤JᦪPõöVa#ᢥ᯿JᦪḄÎOPbᦪf(X)ᙠXᜐḄh▤Jᦪòùúᑡ᩽▲hm(x+Ax)—(x)rw=Ax->0Axf(x)Ḅ▤ᦪy஻=/(X)Ḅᦪᦪf(X)Ḅ▤ᦪd3ydx3!ᙢᡃ$%&f(x)Ḅn▤ᦪ(ᐸn-1▤ᦪḄᦪᓽ᝞-f(x)Ḅn-1▤ᦪḄᦪ.ᙠ01ᦪ(2ᩭḄᦪf(x)Ḅn▤ᦪ/456d”d”ᓽᨵ9y0";'=yn(n=2,3,4……),▤A▤BCḄᦪD(E▤ᦪ஺G190615;Jy=sin2xᑣy஻=

57ூOᶧQR11020305S┐UV⚪XY௃[Sy-cos2x(2x)-2cos2xyn=2(-sin2x)(2x)r=-4sin2xG29910ᦪ\Ḅ▤ᦪy"஺ூOᶧQR11020306S┐UV⚪XY௃9[᪆;^_⚪`⌕ὃcdᓫᦪf▤ᦪ஺gᑖ4ᑖ஺2—r/(r)=In,ᑣiপ=G39613Jᦪ2+xூOᶧQR11020307S┐UV⚪XY௃9[᪆;/(x)=ln(2-x)-ln(2+x)ম=]42+x8x/"«=i(1)=lG49810Jy=axIn2a+a(a-1)xa-2G5031"Jᦪy=x2+e2x,ᑣyḄ50▤ᦪy<50)=ூOᶧQR11020309S┐UV⚪XY௃9[᪆;^_⚪`⌕ὃcdᓫᦪfE▤ᦪ஺gᑖ4ᑖ஺y'=2x+e2x.2y"=2+e2x22ue2x-23y'=e2x-2n(n>3)»50)=p.250(m)nᑖ

581.nᑖḄ%&%&᝞-ᦪf(X)ᙠpXᜐḄr1stᑁᨵ%&᝞-UvwxyᙠpXᜐḄᦋxy{*,ᦪḄᦋxyAy}B⊤(⚗AS{y=A(x)Ax+o(Ax)({x-0)ᐸA(x).XAxᐵo({*)E▤Ḅ_yᑣᦪy=f(x)ᙠpxᜐ}nA(x)Z\x(ᦪᙠpxᜐḄnᑖ(dyᡈdf(x),ᓽdy=df(x)=A(x)Ax2.nᑖḄ&Jᦪy=f(x)Ḅ᝞ᡠM(x,y)(CḄ%pMo,(?#1)axIna(4)d(Inx)=—dxx/r(5)d(a)=----dx(a>0a¥1)rIna(6)d(ex)=exdx(7)d(sinx)=cosxdx(8)d(cosx)=-sinxdx

5921(9)d(tanx)-secxdx=----------dxcos*2x21(°)d(cotx)=-cscxdx=-———sin'x(u)d(secx)=secx-tanxdx(12)

60fê5´ᦪÊ⊤,íᔠìᑣö÷ᝅ஺ᑖëìᑣíᔠ,ᐵ¶ùúÃf஺ÓÈᢣUð,ᦪÉÊ⌕ᱞ஺ñòᐵ¶⌲⚗,üᖪᦪᨬÿ⌕஺ôḄᦪᐳ⚗,UVUV஺ᖪḄᦪᑖᑖ஺ᔠᦪᣵ஺◚ᦪ!"#$y&'()*▤ᦪ▤▤,-./0⌕஺12345᩽▲,HIJKL5,ᑖ9ᦪᑖ9:,MNᔲ=P஺ᦪ;ᑖ<=>,;ᑖQRSTᣵ஺?@ABC,EUVWXY,D./EFᦟ,Z[ὃ]^_஺`aᖛc5d5efghᝯ஺jk⁚ᦪḄmᵨoVὃp⌕5q«“8»1.WUxyᵨz]{|ᑣ50'8'"08”ஹ“8-8”HḄ᩽▲Ḅ|஺2.xyᑭᵨᦪᑨHᦪḄᓫឋ5ᦪḄᓫ1ஹḄ|஺LᑭᵨᦪḄᓫឋᓫḄ=஺3.ᳮ#ᦪ᩽4Ḅᭆxy5ᦪḄ:ஹ᩽4:ஹ᩽4ஹᨬᜧ4ᨬ4Ḅ|L#ᓫḄmᵨ⚪஺4.LᑨḄ¡ឋL5Ḅ¢:஺5.L5Ḅ¤¥¦§¨©¦§oª⌕«¬ᑁ®q(-)z]{|ᑣ5᩽▲01.5Hᳮ2.3(z]{|ᑣ1)᝞²জlim/(x)=0,limg(x)=0XT½0XTX஺ঝf(x),g(x)ᙠXoḄÂÃÄᑁ(:XoÅÆ◀᜜)ÅÉᡈX)Mঞlim'J=A“TX஺g'S)(Aᨵ▲Ðᦪᡈ8)QÑ=)Ò=ᨴ1mᑣXTXog(x)XTXog(x)(ᡈÔx_xoᦋX—8)

61hmx—27-40Ø1ÙÚ:ூßᶧáâ11020403ã┐åæ⚪çè௃lim(x+l)(x-2)3ED:'(=xߟ2(x+2)(x-2)4EGHIJKLᑣNlim2x-l3'(=x—>22x4<.arcsinr-rlim———=----Ø2o9517q5ó°Sin”ூßᶧáâH020404ã┐åæ⚪çè௃0o#᪆q÷⚪ª⌕ὃøᵨz]{|ᑣ53H᩽▲஺ùᑖ5ᑖ஺1úarcsinx-xJ1-arcsinx-xr1lim-=lim---------=lim———sin"D/TTO36x6«-1+X—€511mC——2—Ø3o0417q“ó°xூßᶧáâ11020405ã┐åæ⚪çè௃o#᪆q÷⚪ª⌕ὃøᵨz]{|ᑣ5H᩽▲஺ùᑖ6ᑖ஺1#/1—ee1_lim=lim-----=lim----x-^Qx-^02xx-^022002ᳮ2.4ᑣ2᝞জlim/(x)=oo,limg(x)=oo;Jx->x0ঝf(x),g(x)ᙠXoḄ()*ᑁ(,Xo-.◀᜜)-123g(X)4ঞlimJ:'=AXTXOg'(X)(A:ᨵ▲=ᦪᡈ:8)f(x)/'(X),ᑣlim----=lim---=Ag(x)2%g'(x)(ᡈBx—Xoᦋ:X70)limIn”+1)K1.LXT+8x2

62ூNᶧPQ11020406┐ST⚪VW௃YZ᪆\]^⚪_⌕ὃbᵨᑣL᩽▲஺Xf+8x2Xf+oo2xr^-oo(x2+l)HmIn(x-y)x7——tanrK2.L2ூNᶧPQ11020407┐ST⚪VW௃YZ᪆\]^⚪_⌕ὃbᵨᑣL᩽▲஺Hmln(x--)1flim2'22cos2ᕴ+-----------=7T+--------=g+-----x——tanxx1x——ஹ⇟99-----n-9hߟjcos2X2cosx(-sinx)k+-sin2x=03.0ooSlOsmn2-.opqrnᓄ:ᖪḄrn2ᓽ-ᓄ:vᡈwmn,ᯠyzᵨᑣL᩽▲஺%•(cos--1)X—8ூNᶧPQ11020408┐ST⚪VW௃YZ᪆\]^⚪_⌕ὃbᵨᑣL᩽▲஺11{|=-,£=_2X—>8,/1«ஹcos/-1-sinzrlimx-(cos—-1)=rlim-----------=livm---------=0xߟ^0xt-^0if•ߟ>014.00~00Sl8—8mn2-ᑭᵨᑖoᐸᓄ:vmn2ᯠyzᵨᑣL᩽▲஺fHm/1ஹL(-------)KXTOx/j1

63ூNᶧPQ11020409┐ST⚪VW௃YZ᪆\]^⚪_⌕ὃbᵨᑣL᩽▲஺.I1ஹe*—1—xrlim(----------)=lim---------xf0x/_1x->0x(ex-1)e"—1—xe*—11=lim--------=lim------=—x->0x2x-02r2KXT9ூNᶧPQ11020410┐ST⚪VW௃YZ᪆\'/+sin/2z+2xcosx21+8lim--------=lim------------=lim~rᵨᑣXT8/KTCO2XXT8lim(1+cosx:,j8ஹ,ᙠ2zᵨᑣ஺,1.21+sinxlimlim——------=1ḄZ:X-»oo281(w)ᑭᵨ1ᦪẆᦪḄrឋ¢1.ᦪḄᓫ¤ឋᳮ2.5¦ᦪf(x)ᙠ§¨(a,b)ᑁ-12ᑣ(1)᝞ᙠ(a,b)ᑁḄ«j,xᜐ2ឤᨵf(x)>0,ᑣᦪf(x)ᙠ(a,b)ᑁ®¯ᓫ¤°±²(2)᝞ᙠ(a,b)ᑁḄ«j,xᜐ2ឤᨵf(x)<0,ᑣᦪf(x)ᙠ(a,b)ᑁ®¯ᓫ¤´µ஺K¶·ᦪf(x)=x-arctanxᙠᐸ¹*ºᓫ¤°±Ḅ஺ூNᶧPQ11020501┐ST⚪VW௃/(x)=x-arctanxD(f)=(-cq+co)=----z->0(x#0)1+//(ᓫPQRᦪ½¾ᦪf(x)ᙠᐸ¹*ºḄ¿À,ᜐf(x)=O(ᡈf(x)ᙠÁÂÃ),ÄÅᐸᓫ¤ឋ஺

64ᑭᵨ1ᦪᑨᦪᓫ¤ឋḄjÇÈÉ(1)ᦪḄ¹*(2)LÊᦪḄ1ᦪy2=F(x)²(3){f(x)=0,LÊᦪᙠᐸ¹*ᑁḄᡠᨵÏ,2Ï,o¹*ᑜᑖᡂÒÓÔ§¨,ᙠÕ¿Ô§¨ᑁÖ×f(x)ḄØÙQ2ÚfᦪḄᓫ¤°´§¨஺y=ln(l+/)(-cq+8)ᑁSx<0.y1<0x=0y'=0x>0y'>0y=ln(l+/)ᓫPT;U(-eq0)ᓫPQ;U(O,+8)2.ᦪḄ᩽Û(1)ᦪ᩽ÛḄ¹¹¦ᦪf(x)ᙠ(a,b)ᑁᨵ¹2X஺(a,b)ᑁḄ(j,2Òᙠ,X஺Ḅj¿)*2zÜSÝ)*ᑁ«j,X(x#x),0জឤᨵf(x)vf(xo),ᑣßf(x())ᦪf(x)Ḅj¿᩽ᜧÛ2ßXoᦪf(x)Ḅj¿᩽ᜧÛ,²ঝឤᨵf(x)>f(x,ᑣßf(Xo)ᦪf(x)Ḅj¿᩽^Û2ßX0ᦪf(x)Ḅj¿᩽^Û,஺o)᩽ᜧÛ4᩽^Ûáß:ᦪḄ᩽Û஺᩽ᜧÛ,4᩽^Û,áßᦪḄ᩽Û,஺(2)᩽ÛᙠḄ⌕ᩩãᳮ2.6¦ᦪf(x)ᙠ,XOᜐᐹᨵ1ᦪ23ᙠ,XoæÜ᩽Û2ᑣᨵ?(Xoè0஺jÇᙢ2ßP(x)=OḄ,:ᦪRx)ḄÏ,஺½¾᩽Û,Ḅ1ᦪᙠ2ᑣ᩽Û,Ï,2ìíÏ,j᩽Û,஺f(x)=x3f(x)=3x2{f(xè0,ÜÏ,x=O¦f(x)=x2P(x)=2x{î(xè0,ÜÏ,x=0xீ0ð2f(x)<0x>0ð2f(x)>0x=0:4x)Ḅ᩽^Û,(3)᩽ÛᙠḄᐙᑖᩩãᳮ2.7(òjᐙᑖᩩã)¦ᦪf(x)ᙠ,xoÂÃ23ᙠ,X஺Ḅ(jóô)*(õjö÷+v)ᑁ-1(x)-.øloᡈᙠ)2ᑣfজ᝞ᙠ(÷jù÷)ᑁ«j,xᜐ2ᨵP(x)>0,fᙠ(ú2÷+3)ᑁ«j,xᜐ,

65ᨵ2(X)<0ᑣf(X஺)᩽ᜧÛ2X஺᩽ᜧÛ,²²ঝ᝞ᙠ(X஺j$2ü0)ᑁ«j,*ᜐ2ᨵf(x)<0,fᙠ(“02“0+þ)ᑁ«j,xᜐ2ᨵf(x)>0,ᑣf(xo)᩽^Û,Xo᩽^Û,;ঞ᝞ᙠ(X0-ÿ)ᑁ(+5)ᑁXᜐP(x)fᳮ2.8(!ᐙᑖᩩ%)&'ᦪf(x)ᙠXoᜐᨵ!▤-ᦪ.f(Xo)=O,f''(Xo)/),ᑣজ6f"(x<09ᑣf(X஺);᩽ᜧ>?0)ঝ6f''(x0)>09ᑣf(xo);᩽B>?ঞ6f''(x())=09ᑣDEᑨX஺Gᔲ;᩽>஺ᑭᵨ-ᦪK'ᦪ᩽>ḄMNO(1)ᐜKR'ᦪḄ-ᦪy'(x)=f'(x),Tf'(xo)=0,KR'ᦪᙠᐸVWᑁḄᡠᨵYZ-ᦪD[ᙠḄXi(i=l,2...,k)?(2)_'ᦪf(x)ᙠஹḄabcWᑁd-ᑣᑭᵨ᩽>Ḅᐙᑖᩩ%ᑨ஺ᓽ6f'(X)ᙠXiḄfgh9i(X);᩽>,Xi;᩽>_f'(X)ᙠXiḄfg9f(Xi)DG᩽>X,DG᩽>஺(3)᝞l'ᦪḄ!▤-ᦪf''(x)m᧕Kᨴ.f''(D)[ᙠᑣdp᩽>Ḅ!ᐙᑖᩩ%ᑨ஺ᓽ6f''(q)>09ᑣf(r);᩽B>;;᩽B>?6f’‘(u<09vlwf(Xi);᩽ᜧ>;;᩽ᜧ>_'x0,ᑣyᦋᵨ᩽>Ḅᐙᑖᩩ%ᑨf(Xi)Gᔲ;᩽>ஹGᔲ;᩽>஺{1|9803~'ᦪy=ln(1+x2)ᙠ(g,+oo)ᑁ()A.ᓫB.ᓫC.DᓫD.Dூᶧ11020502O┐⚪௃|᪆~B⚪⌕ὃᑭᵨ-ᦪẆ'ᦪḄᓫឋ஺¡ᑖᑖ42xty=Tl+XTy'=0,£x=0,

666x<09yz<0,'ᦪy=ln(1+x2)ᓫ,6x>09y'>0,'ᦪxIn(1+x2)ᓫ,ᦑ⌱C஺{2-9903/p¦§¨©ḄG()A.'ᦪf(x)Ḅ-ᦪD[ᙠḄDGf(x)Ḅ᩽>B._xo;f(x)ḄYᑣxoª;f(x)Ḅ᩽>C._f(x)ᙠxoᜐᨵ᩽>.f'(xo)[ᙠᑣªᨵf'(X஺)=0D._f(x)ᙠxoᜐᑣf'(X஺)[ᙠூᶧ11020503┐⚪௃|᪆~B⚪⌕ὃ'ᦪ᩽>Ḅᨵᐵᭆ஺¡ᑖ4ᑖ஺᪷¯'ᦪ᩽>[ᙠḄª⌕ᩩ%y⌱C஺{3-0426/K'ᦪ°xe*Ḅᓫ²³´᩽>஺ூᶧ11020504┐⚪௃|᪆~B⚪⌕ὃK'ᦪḄᓫ²³´᩽>஺¡ᑖ10ᑖ஺O'ᦪḄVW;(-co,-oo)oy'=e"+x(-e-x)=(1-x)e"Ty'=0,£Yx=lµ6xீl9y'>0:6x>l9yz<0»ᡠp'ᦪyḄᓫ²³;(-co,1)'ᦪyḄᓫ²³;(1,+oo)'ᦪyḄ᩽ᜧ>;y(1)=e-'{4-0614/'ᦪ·,Ḅ᩽>;x=ூᶧ11020505┐⚪௃y'=2xTy'=0£Yx=06xீ09yr<0,x>OEbj,yz>0,x=0;¸='Ḅ᩽B>{5-0626/K'ᦪf(x)=x3-3x+lḄᓫ²³᩽>ூᶧ11020506┐⚪௃OD(f)=(-oo,+oo)f(x)=3x2-3=3(x+l)(x-l)Ti(x)=0,£Yx=l,x=l(-8,-1)-1(-11)ஹ(1,+8)f(X)+00+f(x)᩽ᜧX\᩽ZXf(-1)=3*f(1)=-1

67fºX»Ḅᓫ²³;º-00,-1»Uº1,+oo»ᓫ²³;º-1,1»fºx»Ḅ᩽ᜧ>fº-1»=3᩽B>fº1»=-13.½¾Ḅ¿ᔣ´Áº1»½¾Ḅ¿ᔣV᝞lᙠºa,b»ᑁ½¾ÄÅÆÇᐸÈᜐḄᑗ¾ḄÈÊᑣ˽¾Äᙠºa,b»ᑁGᔣÈ¿ḄºÌËÈ¿ÍË¿»?᝞lᙠºa,b»ᑁ½¾ÄÅÆÇᐸÈᜐḄᑗ¾Ḅ¦Êᑣ˽¾Äᙠºa,b»º2»½¾¿ᔣḄᑨÎÏᳮ2.9&'ᦪ°fºx»ᙠв³ºa,b»ᑁᐹᨵ!▤-ᦪজ᝞lᙠºa,b»ᑁḄÒx,ឤᨵÔºx»>0,ᑣ½¾°fºx»ᙠºa,b»ᑁGᔣÈ¿º¿»Ḅঝ᝞lᙠºa,b»ᑁḄÒ•x,ឤᨵFºx»<0,ᑣ½¾y=fºx»ᙠºa,b»ᑁGᔣ¦¿º×»Ḅ஺{º1»ᑨؽ¾y=lnxḄ¿×ឋ?ூᶧ11020601O┐⚪௃y=lnxDজ=º0,+8»ூᶧ11020602O┐⚪௃º2»ᑨؽ¾y=sinxᙠ²³|0,2ᐔ~ÈḄ¿×ឋ஺

68y=sinx[0,2ᐔ]y-cosxy஻=-sinx600¿fy°xᐔ(3)½¾ḄÁV_½¾y=f(x)ÈḄPG½¾È¿¦¿ḄᑖßᑣËPG½¾°f(x)ḄÁ஺K½¾y=f(x)ḄÁḄMNOজKR!▤-ᦪr(x)?ঝKRà!▤-ᦪáÇ0ᡈ!▤-ᦪD[ᙠḄXi(i=l,2,k)?ঞÇpÈḄãäᔜḄfg!▤-ᦪGᔲh᝞GᑣæGÁḄçᙶ᪗?টKRÁḄëᙶ᪗஺{19505½¾y=6x-24x?+x4ḄÈ×(¦¿)²³G()A.(-2,2)B.(-co,0)C.(0,+00)D.(-00,+oo)ூᶧ11020603O┐⚪௃|᪆~B⚪⌕ὃᑭᵨ-ᦪK½¾Ḅ¿×²³஺¡ᑖ4ᑖ஺D(f)=(—00,4-00)y'=6-48x+4x\y"=-48+12x2=12(x+2)(x-2)Ty''=0,£x=—2,x=26-209y”>0,ᡠp½¾y=y3—3x+lḄÁG(0,1)஺{30226K'ᦪy=x3—3x2—1Ḅᓫ²³ஹ᩽>Zᐸ½¾Ḅ¿×²³´Áூᶧ11020605O┐⚪௃|᪆~B⚪⌕ὃK'ᦪḄᓫ²³ஹ᩽>Zᐸ½¾Ḅ¿×²³´Á஺¡ᑖ

698ᑖ஺D(f)=(—oo,oo)y-3x2-6x,y"=6x—6Ty'=0,£x=0,x=2,Ty"=0£x=lᑡ⊤£X(-00,0)(0.1)i(12)2(2,+oo)y'+0———0ᓝy"——0++Á/᩽ᜧ>᩽B>/y(1,-3)nf(O)=-lnUñx-5Uᡠp'ᦪḄᓫ²³;(-8,0)U(2,+oo),ᓫ²³;(0,2),᩽ᜧ>;f(0)=—1,᩽B>;f(2)=-5஺ᐸ½¾Ḅײ³;(-8,1),¿²³;(1,+oo),Á;(1,-3)஺4.½¾Ḅòó¾V᝞l½¾CÈḄôPõḼ½¾÷▲ᙢúûü9PýþÿLḄᑣLCḄ஺(1)x—8f(x)—c(cᦪ)ᓽᑣy=f(x)ᨵy=c஺(2)'x—a(ᨵ)x-a’ᡈx—)ᨵf(x)-8,ᓽᑣx=ay=f(x)Ḅ'(.ᚖ)(ᐸ1aᦪ)஺1y=-X—8X[\]^_hm1—=cox`a]^_~2x~3y=5~561X-1Ḅ,'.ூ9ᶧ;<11020606?┐AB⚪DE௃GH᪆JKL⚪M⌕ὃPQḄஹ'஺

70,x2—2x—3x2—2x—3ᑣSG=௃ᑣS,T௄Ḅ,..xJ-2x-3(x+l)(x-3)lim-------------=lim-----------------2XT-1x2-1*T-1(x+l)(x-1)~2x—3[.(x+DQ—3)l1im----x-------=lim--------------=co5r-1(x+l)(x-l)x3-2x-3ᑣ^=1V=—j------Ḅ'஺x-1(Y)ZᦪḄᨬᜧ(L)]^_▭aᵨE⚪1.ZᦪḄᨬ](1)cf(x)ᙠGa,bJfghiḄᑣf(x)ᙠGa,bJfjklᙠḼᨬᜧ]MoᨬL]m஺qf(x)ᙠGa,bJfḄᨬ]rsᙠGa,bJᑁḄ᩽]vowxyv1Qz஺{|?ᙠ}wxᑁhiḄZᦪ~jkᨵᨬᜧ]oᨬL]஺(2)QhiZᦪf(x)ᙠwxGa,bJfḄᨬᜧ]ḄH⚪?জQZᦪf(x)ᙠ(a,b)ᑁḄᡠᨵv^ᦪ~lᙠvXi(i=l,2...k)ঝfᔜvḄZᦪ]f(xPf(X2),…f(xQ^wxḄyvḄZᦪ]f(a),f(b)5ঞfḄk+2Zᦪ]ᐸ1ᨬᜧḄZᦪ]gᨬᜧ]M,ᨬLḄZᦪ]gᨬL]m஺{|?জ᝞f(x)ᙠwx(a,b)ᑁrᨵj᩽ᜧ]ᨵ᩽L]ᑣ᩽ᜧ]gf(x)ᙠwx(a,b)ᑁḄᨬᜧ]?ᳮ᝞f(x)ᙠwx(a,b)ᑁrᨵj᩽L]ᨵ᩽ᜧ]ᑣ᩽L]gf(x)ᙠwx(a,b)ᑁḄᨬL]஺ঝ᝞f(x)ᙠwxGa,bJfᓫhiZᦪᑣᨬᜧ(L)]ᙠwxyv¡z஺61G0019JQZᦪ£xb*ᙠwxG0,2JfḄᨬᜧ]¥ᨬL]()ூ9ᶧ;<11020701?┐AB⚪DE௃GH᪆JKL⚪M⌕ὃPQZᦪḄᨬ]஺§ᑖ6ᑖ஺y'=(1—x)eT¬y'=0,zvx=l,,12MD=jy(2)=—,®y(0)=0,ee_j(l)=-ᡠZᦪ°*6*ᙠwxG0,2JfḄᨬᜧ]QᨬL]y(0)=0.2.ᨬᜧ(L)]ḄaᵨE⚪QHᨬᜧ(L)]ḄaᵨE⚪Ḅ?(1)±²³⚪´µ⚪|ᑡZᦪH᪆·5(2)AZᦪQ᩽]5(3)ᑨkᨬᜧ(L)]5(4)9⚪஺62.»¼½aḄjᙽ¿ÀÁÂÃÄÅᔜÆÇjᜧLÈḄL¿ÀÁᯠʻļ

71ᢚÌÍjÎÏḄÀÐEÆÇḄL¿ÀÁḄ¼½ÑÒᡠzÀÐḄÓÔᨬᜧÕᨬᜧÓÔÑÒÕூ9ᶧ;<11020702?┐AB⚪DE௃GH᪆JKL⚪M⌕ὃPQHZᦪḄᨬ]_▭aᵨE⚪஺cL¿ÀÁḄ¼½X,ᑣÀÐÖ☢Ḅ¼½a—2x,ØcÀÐḄÓÔV,ᑣV=-2x)2,(o°,62y0஺aax=—ᡠ6à--Ḅ᩽ᜧ]vᓽgᨬᜧ]váᓽL¿ÀÁḄ¼½6ᡠzÀÐḄÓÔᨬᜧÓÔ27஺(Ä)ᑭᵨZᦪḄᓫឋäå~æ·çäx^xOᨵf(x)>g(x)êëìZᦪF(x)=f(x)g(x_F(x)§îïᩩñ?(1)F(x=O5(2)x>xOF'(x)>0,F(x)>F(x),F(x)>0o)0x>x()FF(XQ)F(x)>0F(x)-g(x)>0F(x)>g(x)6lG0026Jäå?1+xÖx+M+K)>-+>°)ூ9ᶧ;<11020703?┐AB⚪DE௃GH᪆JKL⚪M⌕ὃPᑭᵨZᦪḄᓫឋäå~æ·஺§ᑖ8ᑖ஺ä?c஻õ)=1+xln(x+J1+/)-Jl+x

72/(r)=ln(r+Jl+x2)+J—-2L__=ln(r+♦+/)f(0)=0ᑣJi+/+/x>0/3>°J"),ᓫ÷ø...f(X)>f(°)ᓽ1+xln(x+Jl+x")-Jl+x2>0áᓽ1+xln(x+Jl+x")>J1+xz*>0)jx-——02ூ9ᶧ;<11020704?┐AB⚪DE௃GH᪆JKL⚪M⌕ὃPᑭᵨZᦪḄᓫឋäå~æ·஺§ᑖ10ᑖ஺ä?/c/(x)=ln(l+x)-x+—,g(x)=x—In(1+x),i2yx>0ᔢ/(x)=---l+r=—>0,ú1+r1+r1xS(x)=1-------=------>°1+X14-X°/(x)=ln(14-x)-x4--ᡠx>02,g(x)=x—ln(l+x)ᙳᓫ÷ø2xx-——f(0),g(x)>g(0°0,ᓽ2,ln(l+x)02஺Kÿ•ᐗᦪᑖᙠᑖᓰᨵ᩽⌕Ḅᙠὃᓰ30%,45ᑖ஺⌕ᑁ!᝞#$%ஹᭆ()ᑖ*$+ᦪ,ᑖḄ-.ஹᦪḄ/+ឋ123ឋḄᐵ5ஹ+ᦪ1ᑖḄᐵ5஺6ஹ78)ᑖ*$9:;<ᦪḄ+ᦪஹᑖ=>?ᑣ78ḄA+=>ஹBᔠᦪA+DஹEᦪA+D<஺A+F;<ᦪ%>⊤Bᔠ?ᑣ2Hᝅ஺ᑖJ?ᑣ1Bᔠᐵ5KLMA+஺N9ᢣEPQP+ᦪ=>⌕Rᱞ஺

73UVᐵ5⌲⚗+,ᖪ+ᦪᨬ⌕஺Ḅ+ᦪᐳ[⚗,U+_V`aU_V+஺ᖪḄ+ᦪᑖ>,bcᑖde+_bVe_b+஺Bᔠᦪ]]+,fgBfhᣵ஺◚ᦪ[klm+dncoypqᑮ஺s▤+ᦪ▤▤+,!⌕஺uvwxA᩽▲,-.PA+,ᑖzᦪᑖz*,+ᔲ<+஺+ᦪᑖ{<|,ᑖUᣵ஺}=>~,,ᦟ,ὃ஺ᖛA+F,A+ᝯ஺Pஹ¢ᵨ)ᑖ*$ᑭᵨ¥¦DᑣA᩽▲ᑭᵨ+ᦪẆ¨ᦪḄឋ᝱⌕ᒹ«ᦪḄᓫឋ1᩽xஹ®¯Ḅ°±ឋ1²*ஹ®¯Ḅ³´¯ᨬxḄ¢ᵨµ⚪ᑭᵨᦪḄᓫឋ·K¸ᓫḄf<>஺-Eu᩽°²¯u᩽°²ᐵ¹〉»¼U½¾*¿*2¯ÀÁÂ஺ÃPÄ%ᐗᦪᑖÃ%⁚f-ᑖÆBὃ⌕AÇ1.ᳮnÉᦪ1f-ᑖḄᭆ(Êᐸᐵ5ÌÍf-ᑖḄឋÎ஺2.ÌÍf-ᑖḄ9:=>஺3.ÌÍf-ᑖÃ%ᣚᐗDÌÍÃ6ᣚᐗD(Ò▲PÓÔᣚ1¸ᓫḄ᪷>Ôᣚ)஺4.ÌÍf-ᑖḄᑖ)ᑖD஺5.Ì͸ᓫᨵᳮᦪf-ᑖḄ×8஺Æ⌕ØÙᑁÇ(-)f-ᑖᨵᐵᭆ(1.Éᦪ-.Ûf(x)-.ᙠÜÝIÞḄ%ßàØᦪ᝞áâᙠ%ßᦪF(x),ãqᙠÜÝIÞḄä%*dåᨵæ஺)=/(`,ᡈU஺)=1/஺)êᑣëF(x)f(x)ᙠÜÝIÞḄ%ßÉᦪ஺ì$᝞áf(x)ᙠíÜÝÞ23ᑣᙠîßÜÝÞf(x)ḄÉᦪF(x)%-âᙠ஺

742.f-ᑖ-.ᦪf(x)ḄᐰóÉᦪḄôᔠëf(x)Ḅf-ᑖRõföëfᑖ÷ᦪf(X)ùᦪ/(x)dxù⊤¦>Xᑖûv஺᝞áF(x)f(x)Ḅ%ßÉᦪᓽᨵ“(x)dx=F(x)+qᐸCᦪ(ᑖᦪ)஺3.ᑖḄឋপ=/(x)ᡈJ஻x)dx=/(x)dxফ!"(x)dx=F(x)+Cᡈjd"(x)=F(x)+C)f1/(x)()x)*…(,(x)dx=J/(x)dx±J0(*)dx(…(JP(x)dx(3ভ2ಘdx/Ax5k78°Ḅᦪ)1!ᐺ;<⚪_1_1ff(x)e^dx=—e'+C<1!9607᝞D7EJᡂGHᑣf(x)78_2_j_2J_A.XB./c.xD./ூOᶧQR11030101S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃaᑖᭆc஺dᑖ4ᑖ஺11ᵫᑖḄgHᨵ(iH*+6'=fW)ex,ᓽ

75H1-Aie*•(i-j)=/(x>*,R(/(x)=—j-xx»ᦑ⌱B.<20004vcotxwf(x)Ḅixyzᦪ,ᑣf(x)78222?A.escxB.-cscxC.secxD.-secxூOᶧQR11030102S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃayzᦪḄᭆc஺dᑖ4ᑖ஺ᵫyzᦪḄg,ᨵf(x)=(cotx)--csc2x»ᦑ⌱B.<30304f(x)=e"ḄixyzᦪwA.exB.exC.-exD.-exூOᶧQR11030103S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃayzᦪḄᭆc஺dᑖ4ᑖ஺Je~xdx=—{i1td(ߟx)=—Jde~x=—e~x+Cᡠ)f(x)=-e”ḄixyzᦪwvLᦑ⌱C.<40403vzᦪ=i,ᑣᑖJ"""'78A.2B.2e2x+CC.-2e2x+CD.e2x+CூOᶧQR11030104S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃaᑖḄ\ឋ஺dᑖ4ᑖ஺Jy'(x)dx=/(x)+C=/x+Cᦑ⌱D.

76(-)ᑖ1.\ᑖE\kdx=hi+CপJf-i+C(aw-1)ফ1஺+1\^dx=--+Cবxxddx=2.+Cf—dx=

77\x\+Cমxa'+C()>OaH1)fJIna(6)(fg=/+C7)sinxdx=-cosx+C(8)Jcosxdx=sinx+C(9)J|sec2xdx=tanx+C(10)JIesc2xdx=-cotx+C(11)JIsecx-tanxdx=secx+C(12)J

78cscxcotxdx=-escx+C(13),1dx=arcsinx+C(14)—!^dx=arctanx+C1+?(15)Inxdx=xlnx-x+C(16)Jtanxdx--ln|cosx|+C(17)cotxdx=In|sinx|+C(18)2.ᑖ(1)ᑖ<1.ᑡᑖপiூOᶧQR11030105S┐UV⚪WX௃!Z᪆QT)----—uX—2x+ldx=J(=\=|j-+2«+C22r-ldx(2)12*+lூOᶧQR11030106S┐UV⚪WX௃

79!Z᪆2-1(2*)2-1dx=dx2*+12H+1_f(2f(2*+1)HF+12*=---x+CIn22tanxdx(3)ூOᶧQR11030107S┐UV⚪WX௃!Z᪆Jtan2xdx2=J(secx-l)dx=tanx-x+Cf.2~12dx(4)JsinxcosxூOᶧQR11030108S┐UV⚪WX௃!Z᪆C1.fsin2x+cos2x,I.22~"=I--22JsinxcosxJsinxcosx=f(—^-+i)£Jcosxsinx=tanx-cotx+C¤5¥ூOᶧQR11030109S┐UV⚪WX௃!Z᪆

801+X+XX1+XJ-----------dx=\[-----------+-----------]cZrx(l+x)x(l+x)x(l+x)=J(-------+—ydx,l+xzX=arctanx+In|x|+C[0516]¦1+/)=3J(l+?)^=X+y+CூOᶧQR11O3OHOS┐UV⚪WX௃I(——ᔆ+l)dsinx<2[9904]sinx78------Fsinx+C-----Fsinx4-CA.sinxB.sinx-cotx+sinr+Ccotx+sinx+CcDூOᶧQR11030111S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃa«ᓫzᦪᑖ஺dᑖ4ᑖ஺!(-L-+l)dsin®=i---+sinx+Csinxsinx.ᦑ⌱A.<3!0322vzᦪ/(")=1+',J"")*oூOᶧQR11030112S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃaᐜ°zᦪEḄ±ᣚH³ᑖ஺dᑖ4ᑖ஺ᵫ஻/)=1+ᔾµ/ಘ=1+X,J/(x)/=J(l+x)dx=¶+eᑣ

81(2)·iᣚᐗᑖ¹Jf(u)du="(஻)+C,;=º᜜ᨵ¼½Ḅ¾ᦪHᑣu=0xJfudu=Fu+C=F[^x]+C¿:Á-0X/+C;=F'-0x/Âx=/ூ<¤ᑗP@jJcosLx=

82J/WM/(x)dx=F[^(x)]+C-2dx=—d—xxIߟYcos—dxJ/Xf1,1=-COS—df—JXX,1c=Esin—FCXᵨḄÄÅᑖESজdx=—d(ax+b)=—In|2x+1|+C*2,1f(ax+b)dx=—f(ax+b)a(ax+b)af(ax+b)dx=—f(ax+b)d(ax+b)xdx=—d(ax2+ঝ2a—==dx=2d\[xঞ«-2-dx=d,iটx

83Ldx=d(Inx)ঠxxxডadx=deজcosxdx=d(sinx)ঝsinxdx=-d(cosx)ঞsec2xdx=d(tanx)0>csc2xdx=-d(cotx)ঠsecxtanxdx=d(secx)i]cdx=d(arcsinx)ডJl------=d(arctanx)ঢ1+Xfxsin(x2+1)ᡂ<2(1)!0218JூOᶧQR11030202S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃaÄÅᑖᑖ஺dᑖ6ᑖ஺JxsinCx3+1)g=ÎJsin(d+l)c/(x2+1)=igcosQ?+1)+Cফ!0523¦(1+/yÐூOᶧQR11030203S┐UV⚪WX௃¦(1+H)2Ñ

84=ij(l+?)2^(l+x2)=^(l+x2)3+Cব!0623jxcosx2dxூOᶧQR11030204S┐UV⚪WX௃fxcosx2dxxdx=—dx12'(JCOSX2d7=—sinx2+C2Itanx(tanx+l)afx<3,0022JூOᶧQR11030205S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃaÄÅᑖᑖ஺dᑖ7ᑖ஺Jtanx(tanx+l)dx=J(tan2x+tanx)dx=J(sec2x-1+tan=tanx-x-In|cosx\+C2x+(arctanx)J-----------j------ax<4,98221+X2ூOᶧQR11030206S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃaÄÅᑖᑖ஺dᑖ6ᑖ஺

85{x+(arctanx)--------z-----axJ1+x22cx.c(arctanx),=----dx+------nj1J1+xT2J1+x2=—[-----cZ(l+x2)+[(arctanx)H(arctanx)2Õ1+xÕ12ஹ1,ஹ3y=—ln(l+x)+—(arctanx)+C(3)·Çᣚᐗᑖ᝞D®=Ớ)wØÙᓫÚÛ¾zᦪHÜ/(£)WO,ßvàá)]஻ডᐹᨵyzᦪF(t),ᑣᨵ·ÇᣚᐗᑖE|f(x)dx=J=F(O+C=9[gT(x)]+Cᐸ£=᜛"(')wå=Ḅæzᦪ஺ᵨḄᣚᐗç;ᨵ:èzᦪç;ᡠᵨéᣚéᣚêëR{x,^a2-r2)x=<2sinfíîéᣚR(x,42+>)x=atanfíᑗéᣚï(x,0ax+3)x=^/ax+b᪷Eéᣚ1dx<1.ூOᶧQR11030207S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃañò«ᓫḄ᪷Eéᣚᑖ஺Æᡃ=t,µô=dx=2tdt,ᑣᨵ

86f—U——dxJVx+1=2[q1dtJf+1=2[t-In|f+1|]+C=2[6-õ⊟+1)]+C{X+1*^dx<2.÷v3x+1ூOᶧQR11030208S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃañò«ᓫḄ᪷Eéᣚᑖ஺______?-1ÆJ3x+1=HHµ%i3,P=12dt,ᑣᨵᡝ_1]]2[J+]dx-\-----1dtJl/3x+iJt=1j(?+2f)dt=Jr+C1£12=yy(3x+l)3+j(3x+l)3+CJ-----r<3.¤"¥2ூOᶧQR11030209S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃañòúûᣚᐗ¤î±¥ᑖ஺Æx=sint,µdx=costdt,ᑣᨵ

87f---1-ᦈ(7)5=[-----5—■COSüJcost~\17ᡂJcos£=tan£+Cj[=^dx<4.x2Vl+x2ூOᶧQR11030210S┐UV⚪WX௃!Z᪆\]⚪^⌕ὃañòúûᣚᐗ¤ᑗ±¥ᑖ஺Æx=tant,µdx=sec2tdt,ᑣᨵ=dx+ý123f=J——j----------sectd£tan^Zsec/.cosZ,=JߟÇᡂsint1,.t=J----c<-dsinZsin,=--—+csin/J1+/+Cx

88(4)ᑖþᑖIudv—uv-IvduᑖþᑖEJJu,dvḄ⌱⌕ᨵ:u,dvḄ⌱^_u=^,dv=exdxXᢣJ■sinxticX"#=%,&'=sin%)*c"cosx<&01\xixdx,"2=Inx,4=/ᡂ+X,W-arcsinMr-X./"2=arcsinx,(h=y^dxpt/8-arctanxcirJexsinxcicᢣX"2=sinx,Wv=e'Aje*-cosx^cfxcosxt&E1.HIJூLᶧNO11030301)┐,S⚪UV௃

89jxcosxdxXY)"Z=xdv=cosxdxdn=dxv=sinxjxcosxdx=xsinx-Jsinxdx=xsinx+cosx+CX]:Jxcosxdx=Jxdsinx=xsinx-Jsinxdx=xsinx+cosx+C^L_xsinx+cosx+CE2HIj,exdxூLᶧNO11030302)┐,S⚪UV௃jx^e~xdx=-Jxde=-(b2/YcY,=-/gf+2Jxe~xdx=-x2rx-2jxdrx=-x^&*~2(x®x-Jw^dx)——x^&~2x&X_2J®^dt-x)^h_—(jk+2x+2)g'+C2E3^0120_HImInxdxூLᶧNO11030303)┐,S⚪UV௃

90JxAnxdx"u=lnxdv=Pdx21x,Jau=Haxv=——x3j/inxdx3,3x'x=—Inx-f—•-rfx3J3x—Inx-bj/dx33Jn13.——Inx--x+C33—InX--x3+C^L_39jlnxdx=xlnx-jxd

91x,r1,=xlnx-Jx--axx=xlnx-x+CfarctanxoE4HIJூLᶧNO11030304)┐,S⚪UV௃Jarctanxdx=xarctanx-Jxdarctanx=xarctanx-Jx.1xarctanx-12q+1)19=xarctanx--ln(l+x)+CJarctanxoir=xarctan+Jl-x2+C

92xarctanbߟߟln(l+x?)+C*^L_2E5HI.'sinxdxூLᶧNO11030305)┐,S⚪UV௃Je'sinxdx"=sinxdv=exdxdu=cosxdxv=exjexsinxdx=°csinx-jexcosxdxu-cosxdv=exdxdu--sinxdxv=exsinxdx=o'sinx-(excosx+sinxdx)=exsinx-excosx-J/sinxdx2j/sinxdx=exsinx-excosx+C_\esinxdx=—(sinx-cosx)+C—(sinx-cosx)+C^L_2fX+ln3x,-------ax7E6^9921_HIJ(xlnx)ூLᶧNO11030306)┐,S⚪UV௃^X᪆_z{⚪⌕ὃ}~ᑖᑖᑖᑖ஺ᑖ6ᑖ஺x+ln3x,-----------dx(xlnx>1Inxஹ,fcxln2x+==Jc—dInx-Jinxd(-)=---T2lnx-Jhdx_Inxx1x1Inxxx

93E7[9621஺+3=ூLᶧNO11030307)┐,S⚪UV௃Jln(x+J1+/)dx=xln(x++b2)-Jxdln(x+J1+/)=xln(x+Vl+x2)-Jx----^=-(1+kx).dxJx+Jl+/271+x2=xln(x+J]+c)-f,xHx=xln(x+Jl+i)-1j2d0+/)=xln(x+Jl+x?)—J1+/+CfcosJx+WxE89821HIJூLᶧNO11030308)┐,S⚪UV௃^X᪆_z{⚪⌕ὃ}~ᑖᑖᑖᑖ஺ᑖ6ᑖ஺"6+1=£,X=F-1,dx=2tdt,ᑣᨵJcosJx+1dx=2jtcos£ᡂ=2j2d(sinl)=2(£sin£-JsinZᡂ)=2(/sin/4-cos4-C=2(4+lsinJx+l+cosJx+l)+CE9[9729]HIJxtaMXdxூLᶧNO11030309)┐,S⚪UV௃

94Jxtan2xdx=Jx(sec2x-Y)dx=Jxsec2x95——-------dx=\----------------dxJc+3X+2J(x+l)(x+2)=f=J—^dx(x+1)-J—^d(x+2)Jx+1x+21x+11x+2=In|x+l|-ln|x+2\+Cx+1=In+cx+2dxE3^9722_HIூLᶧNO11030313)┐,S⚪UV௃^X᪆_z{⚪⌕ὃ}ᓫᨵᳮᦪḄᑖ஺ᑖ6ᑖ஺3,x+x-X,———^5_dx14-?=j[.ញᔵ21=£__2i(i2)+cn+zᑖḄ¨:ᑖᑖ⌮ªIcᐜ¬®cᑖ¯®ᦪc°±ᦪI²,ᑖU▲᜜cY⊤/¶·cᱞ¶zᑖ⊤c¹º»¼½¾஺¿Àᑖᨬz,ឤÎÏ◤ÃÄcᣚ®ᑖÆᓄc²ᑖ¬È®cYᣚᐗᨬÊ⌕cË~Ì~ᨬᓫ,]ᣚᐗË~c᪷ÑÒᣚ±ÓÔc/ÕÒᣚᨵÖ×cØ◤ÏᑗÏcᑖᑖÚÛᓄcÜdv¯ᐵÞcᗩᢣᗩᙠác+,.¬âᐜcᢣãÓäåcæçèᢕᐺcëìᢈîïÈÄ,ðIIᖛòᑖ¨cᑖªIIó஺]⁚ᑖõᐸ÷ᵨ^ùúὃû⌕_1.ᳮXᑖḄᭆýõᐸþÿᦪḄᩩ2.ᑖḄឋ3.ᳮ▲ᑖ▲Ḅᦪ▲ᑖᦪḄ!஺

964.#$%&-()*₈,-஺5.ᑖḄᣚᐗᑖ!0ᑖ1ᑖ!஺6.ᳮ2345Ḅ67ᑖḄᭆ9ᐸ;ᙶ᪗ABᵨᑖ;0

97x—◕᝞nߟoo,{Ḅ᩽▲ᙠ0a,bḄᑖ!IḄq!2ᐵᑣ᩽▲mᦪf(x)ᙠ45a,bḄᑖtᓽবgᔳ஺ভzf(x)ᙠ45a,b஺ᐸf(x)mᦪf(x)dxm⊤-xmᑖa,bmᑖ45amᑖ▲bmᑖ▲஺ᵫᑖḄHwᑮজ1f(x)dx=%ভᡂ=£/3)ᡂf(x)dx=-ḱ/(x)dxঞC/x¦=02.ᑖḄᙠᳮ(1)᝞f(x)ᙠ45a,bbcᑣf(x)ᙠa,b஺(2)᝞f(x)ᙠ45a,b§ᨵᨵ▲fᨵ¨5©dᑣf(x)ᙠa,b஺3.ᑖḄª«ᑖª«⊤¬ᵫ®¯f(X),=®x=a,x=bIxK°ᡂḄᔜ1ᑖ☢Ḅ²ᦪ{஺

984,ᑖḄឋµ¶·dx=Ḅ(x)dx(1)஺(km»ᦪ)஺)L/(x)±g(x)]dx=E/(x)dx±Âg(x)dx(2%(x)dx=C஻x)dx+R஻x)dx(3)v(x)dx4g(x)dx(4)᝞f(x)ᙠ45Ra,bYᨵf(x)

99জ'ßxà=:â/ফä=/ßxàaxåæde5-f%àᡂ=rçàজdx"dèéxà—=4஺ßêë·ঝHHdrWxà7Lஹ%à·=WßXàYVßxà-/R0ßxàYẆXàঞdxJp÷3.âᦪᙠᳮᳮ᝞ᦪfßxàᙠ45Ra,bYbcᑣজßXà=ᓃডyfßXàᙠø45Ḅrfâᦪ஺é1R0003Y^ᦪfßxàᙠ45Ra,bYbcᑣᑡúæyûüḄA.£,ßxàdxfßXàḄrfâᦪB©/ডfxḄᦪa

100439912F/(x)=6.1+1ᡂ,ᑣ/Q)=ூ#ᶧ%&11030403+┐-.⚪01௃K᪆MN⚪O⌕ὃRS▲U!ᑖWXUᳮ஺Zᑖ4ᑖ஺/,W=fo21,l+d£z1=x2.]+J(X2),=2X3_l+J4497186sin2ট-1)x<0/-12,x=01e2,costat,x>0ghif(x)ᙠx=0ᜐḄklឋ஺ூ#ᶧ%&11030404+┐-.⚪01௃K᪆f(0)=2/(0-0)=hm/ব=hmᔳ2যT)=2XT஺-XT஺-e'—1/(0+0)=lim/(x)=lim—vcos%Z=limC°SX=1H+{'XTO+XJ஺3)+1Vf(0-0)#(0+0),D.f(x)ᙠx=0ᜐ~஺()U!ᑖ1.——₈᝞f(x)ᙠa,bḄklMx)=/(»,ᑣᨵ1/ঞ*”য=eত-ভᑣf"x)N41.প6lx)ᨵklXᦪ,)=3,Rb)=5,ூ#ᶧ%&11030501+┐-.⚪01௃

101#2/V)=/©)-/(1)=5-3=2(2)0606Joூ#ᶧ%&11030502+┐-.⚪01௃f1^=y|o=|a3-O3)=|o42=ூ#ᶧ%&T1030503+┐-.⚪01௃K᪆MN⚪O⌕ὃRᵨ——U!ᑖ஺-rdxJ«1+x2ri?+1-1.=------d(X51+/l1Ur(F¤=(x-t7rctanx)|J=1--4¦.Ḅ1243.§¨Q+/)ᑣkூ#ᶧ%&11030504+┐-.⚪01௃+ª)21+/12552|A=12,A=30#30

102/(x)=2x,lீxW2,W஺³44(1)02216ᦪூ#ᶧ%&11030505+┐-.⚪01௃K᪆MN⚪O⌕ὃRᑖ«ᦪU!ᑖ஺/(¬=8/N+2᝕=®+⎋=+4-1X2-3^(X<0)-3xpx=<3x-/,(03)ூ#ᶧ%&11030506+┐-.⚪01௃2.U!ᑖḄᣚᐗ!ᑖ²£®'-3µ=£¶-3M+r(3x-/·ᣚᐗ!ᑖUᳮ:6ᦪf(x)ᙠa,bkl¹Sᣚx=ºডZ¼:(1)½tᙠெ▢SᓄÁ,ḄÂᙠᙠbSᓄ,஺3)=|}=b.প(2)ᦪÃ=ºডᙠÄᓫÆᨵklḄXᦪᑣᨵf/V)Ç=r/19(ᑗÉÊËÌU!ᑖḄᣚᐗ!ᑖ஺f4dx=41(1)0023ᔣ4-eூ#ᶧ%&11030507+┐-.⚪01௃

103K᪆MN⚪O⌕ὃRᵨᣚᐗ!ᑖ²U!ᑖ஺Zᑖ7ᑖ஺β+r14,=——--■——axJo4-e1“(l+Ð)=x|J-ln(4-e*)|i=l-ln(4-5)+ln3M⚪ᑭᵨÒ∑N=ᡈ4e)βÕ+Ö”1×4_/=஻Úx=ln(4-஻)^-4½x=0,Áu=3½x=lÁu=4-eᑣᨵ=l-ln(4-e)+ln3J%nxss(2)Joூ#ᶧ%&11030508+┐-.⚪01௃β+cosx=dsinx

104**I♦sinxcosAafx=\smxdsmxJoJoβÕ+×sinx=u,cosxdx=duKau=—½x=0Á,u=0;x=4Á2420124஻x+Vxூ#ᶧ%&11030509+┐-.⚪01௃K᪆MN⚪O⌕ὃRᵨᣚᐗ!ᑖ²U!ᑖ஺Zᑖ7ᑖ஺¹SᣚC=t,ÚÞ=ᡝN=3/ᡂ½x=lÁt=l½x=8Át=2ᑣᨵx+yfxv3/2M7k=3fGJÇàᓝ஺=+1)|=|ln-|âi+6ᦪf(x)ᙠ-a,akl,

105(I)Ff(x)Ì᜻ᦪåবdx=OফFfèÌᏔᦪᑣ“ব=2"ᡭëìপ+f(-x)=-f(x)L7("(x)=J+/(x¤+Jf{x}dx×x=-t,t=-x,dx=-dt½x=-aÁt=ax=0Á,஺0஺'Ov0rdJ/(x)ë=-J/(-M=f—a.J{LJU=fV(-^=-J+f(x)0£j(x=£/(x)dx+J"(x)ÇTDf(x)dx+Q(x)ë=043vñ+ë=0J-*rl+COSX(l)[0313]ூ#ᶧ%&11030510+┐-.⚪01௃xcosxdx=0Cூ#ᶧ%&11030511+┐-.⚪01௃/{v{…/cosðx=஺(3)[0618]J-i3.U!ᑖḄᑖ]!ᑖ²\udv^uv-\ydu£/v=_gvdu

1067U_4l0324ëூ#ᶧ%&11030601+┐-.⚪01௃K᪆MN⚪O⌕ὃRᵨᑖ]!ᑖ²U!ᑖ஺Zᑖ6ᑖ஺K——+×u=xdv=sinxdxdu=dxv="cosxTVᱏxsinxdx匹2=-xcosx0+8Sᓛ=sinxn=sin—=1U2KÕ+õxsinxdx=ö7dcosxKK=-(xcosXQᵞcosxdx)•5.7V=sinx᧡=an—=10242(1)0423/I"úûூ#ᶧ%&11030602+┐-.⚪01௃K᪆MN⚪O⌕ὃRᵨᑖ]!ᑖ²U!ᑖ஺Zᑖ6ᑖ஺üInἔx=ü·Inx=e-üÇ=2-þ=e-&+1=1(2)[0624]f%ln^

107ூ#ᶧ%&11030603+┐-.⚪01௃22=vnÿ51nᵨ-1fldlnx1)~24"+Dᑖᑖஹ▲ᨵ!"ᜧḄᑖ%&!"'(Ḅᑖ%)&!"ᑖ%ᡈᑖ஺,-fxᙠ'(/%"°23%᝞5᩽▲sW':ᙠ%ᑣ&!"ᑖH-CO..C8f஺A=limf^dxEFRHᦈJ%K&L᩽▲M!"ᑖḄN%OH8,᝞5᩽▲Q:ᙠ%ᑣ&!"ᑖ£8/TUVᦣ஺XYᙢ[Hᑖ\]^/xU]'/""ḄᦈJ]Vᦣ஺_1`0424bcdeூgᶧij11030604m┐oM⚪qr௃`t᪆bvw⚪x⌕ὃ{cdᑖ஺|ᑖ6ᑖ஺t:

1081b5r8-wᑣ஺᝞1t:w=-=_(஺_1)=bJo-dxxx_2`9824bcde+eூgᶧij11030605m┐oM⚪qr௃`t᪆bvw⚪x⌕ὃ{cdᑖ஺|ᑖ6ᑖ஺exdx1+9"81)arctanQ%b/KKK—————244()ᑖḄᵨ1.cd☢Ḅ☢(1)Xmy=f(x),y=g(x)(f(x)2g(x))]x=a,x=b(aWb)ᡠᡂḄ☢Ḅ☢A5=£`/(T")ᡭ,

109/y=/U)H2NYmx=PHyNde¥0NH஺6/N¦ᩞ3NN]¨:,©=1HH:S1N,ᡠᡂḄ£☢Ḅ☢A"=£ª8«8%T஺2_1.¬ᵫV=x®y=2xᡠᡂḄ☢Ḅ☢஺ூgᶧij11030701┐oM⚪qr௃`t᪆b¯°%t±²³f2y=x,U=2x,´µḄ¶·oH0,0N,¸H2,4N஺2ᑣV=X®y=2xᡠᡂḄ☢Ḅ☢24=JQ(2X-/)dx=(7O=一3ᡈὅA=1Q(8-*n=~

110_2.¬¹y=%®y=x-2ᡠᡂḄ☢Ḅ☢஺ூgᶧij11030702m┐oM⚪qr௃`t᪆b¯°%t±²³f2ly=%1/=X-2,´µḄ¶·A(1,-1),B(4,2)஺ᑣ1/=%®y=x-2ᡠᡂḄ☢Ḅ☢23Q½=Ho+2--¾=(1+2^—À)A=5ÁtHXᑖÂÃA=ᙠ&Ådx+jf`Çx-2bdx34R3_319826b¬ᵫÈᱥT=®ᐸᙠ·(1,0)ᜐḄᑗ]yÎᡠᡂḄ☢Ḅ☢஺ூgᶧij11030703m┐oM⚪qr௃`t᪆b¯°,

111y=-2xj|=-2%=1з(1,0)ᜐḄᑗ±²y=-2(x-l)஺12ᑣᡠ¬ÑÒÈᱥÓ=1*®ᐸᙠ·(1,0)ᜐḄᑗy=-2(x-l)]yÎᡠᡂḄ☢Ḅ☢஺A=(-2*+2)-(1-19=JQ(X-2x+T)dx=io(x-X)2dx_1r1\31_1=y-1)o=3¬ᵫᡂḄ☢☢ÕḄt⚪Ö×m(1)¯₝%¬°Ḅ¶·ᙶ᪗Û(2)ᵨÜÝÞß⌱áXÛ(3)âã-ᦪ®ᑖ'(m(4)cdᑖ஺%=å%/(x)dx="/2(x)dx2.æçèḄè(1)Xᵫ23éêxë0)]x=a,x=b(a

112_1(0028]2,1প¬¹x=0,x=2,y=0õÈᱥÓ=Å+LᡠᡂḄ☢Ḅ☢;ூgᶧij11030704┐oM⚪qr௃(2)¬÷☢íÎæçᕜᡠ´æçèḄè%ூgᶧij11030705┐oM⚪qr௃`t᪆b(1)A=+1ø+ø-(-/+1/3,3ù=(+/O+(b_*)12)242aJO一2X+146=--ᑍ.15(ú)ûᔠ⚪õýþ⚪1.cdýþe_1$0127%,/(▀)=6tan᦮ᦪ)f(3)+f(5)=l/4.(nூᶧ11030706┐⚪௃

113f(3)+f(5)ᦻ=tanxdx+tanxdxᑍZ32=JQtanx(l+tan&x)dxᑍ'+32,=JQtanx-secxaxᐔ,3,=JQtanxdtanx乃14-=-X4041=-42../▲12ᑖ451ᳮ720228:;6S=1-cosx,ᱏ/(;ᜐ=1஺E:;Fᓣ6HভJK6(/"ভᡂ=1-COSX.RSTUVX45Fᱏ/ডᡂ+xf(x)-xf(x)=sinx,ᓽডᡂ=sinx,ᐳX-ᙠ/S[\2,F]^(_`=sin—,ᑍ]^5b=1

1143.ᣚᐗ2ᑖ1ᳮ511Jn%-2x)ix=po")dx73efᦪRx)ᙠhi0,1/jku2ூᶧ11030707n┐⚪௃o᪆qr⚪s⌕ὃvᵨᣚᐗ2ᑖxRS஺yᑖ10ᑖ஺nz.ᣚ,\2x=t,Fx=(l-t)/2,dx=-(lফdt,|x=0t=l}|x=l/2t=0ᑣᨵF6ߟ2ஹTO(=3%=3r4.ᵨ12ᑖᦪḄᭆ749927efᦪf(x)y/ব=m-ὡ/ಘᵨ~7ூᶧ11030708n┐⚪௃\ᵨᵫ:;F/=51"F)"»2/STUVhiব/Ḅ12ᑖF=xdx-A^dxᓽFeA=LA=l/ef=-ᓽ1e5.ᵨᑖ2ᑖx..._/(%)=X-C?f(x)cosxdxஹᓝ¢75.e°f(x)=x+2

115ூᶧ11030709n┐⚪௃:/'«=1JQ/(x)cosxdx=J^/(x)dsinx=/(x)sinx|Q-sinx•/\x)dx=K6sinxdx=cosx|Q=-2/(x)=x-g/(x)cosxdx=x—(-2)=x+2r¥Kᐗfᦪ2ᑖ¦§2ᑖ¦Ḅ᪶©ᑁ«¬Kᙠὃ[®ᓰ32%,®48ᑖ°±s⌕ᑁ«²¥³´᝞¶nKஹᭆᑖ·¸n¹fᦪº»12ᑖḄᭆஹ»12ᑖḄឋ½12ᑖḄᭆºឋ½¾¿hi/ÀÁ2ᑖḄᭆ஺ÂஹÃᑖ·¸nÄKᣚᐗ2ᑖxஹᑖ2ᑖxÅû12ᑖஹ12ᑖ./▲12ᑖÆᐸ45ÈÅÃÀÁ2ᑖḄÅÃ஺ÉஹÊᵨᑖ·¸n12ᑖḄËÌÊᵨ4Í☢ÏÐḄ☢2ÑÒÓÔḄÔ2஺ÄÕÖᐗfᦪ§ᑖ¦×Øὃ⌕4L^oÖᐗfᦪḄᭆÙ4ÂᐗfᦪḄ1ÁÚ஺^oÂᐗfᦪḄËÌÛÁ஺2.^oÂᐗfᦪḄ᩽▲ºjkḄᭆ஺3.ᳮoÂᐗfᦪK▤Þ5ᦪÑᐰ§ᑖḄᭆàáÂᐗfᦪḄK▤Þ5ᦪḄ4x஺àáÂᐗfᦪḄÂ▤Þ5ᦪḄ4xàáÂᐗfᦪḄᐰ§ᑖḄ4x஺4.àá×ᔠfᦪº◚fᦪḄK▤Þ5ᦪḄ4x஺5.Ù4ÂᐗfᦪḄ¾ᩩå᩽æÑᩩå᩽æ஺6.ÙᵨÂᐗfᦪḄ¾ᩩå᩽æÆᩩå᩽æoçᓫḄé▭⚪஺ÄK⁚Öᐗfᦪ(K)ÖᐗfᦪḄᭆ1.ÖᐗfᦪḄ1Á1Á:eDOxyᙶ᪗Í☢/ḄKîhÚ᝞ïðD/ñK¸(x,y),.òzó᯿õKÊö÷²ᨵøKù1Ḅᦪ溬Êᑣúzx,yḄÂᐗfᦪûz=f(x,y)

116ᐸ[DúÂᐗfᦪḄ1ÁÚ஺üýᙢÿᐗᦪu=f(x,y,z)ᐗᐗᦪᐗᦪ஺z=x2+,y2z=x+2y-12.ᐗᦪḄᐗᦪz=f(x,y)ḄD,ᑣᙠᙶ᪗"Oxyz#z=f(x,y)⊤%&'(☢*+,(☢ᙠOxyᙶ᪗-☢Ḅᢗ/ᓽᦪḄD஺᝞z=ax+by+c⊤%••,-☢3z=ᡃ2_/_y⊤wᳫyᙠ'z,{|RḄ~{ᳫ☢z=&+/⊤wᔣ~Ḅᙊ┵☢z=x2+2⊤wᔣ~Ḅᱥ☢஺3.ᐗᦪḄ:-☢5ᐗᦪz=*x,y)ᨵḄ&ᑗ8Ḅ9ᔠᐗᦪḄDᡈDপ஺ᐗᦪḄD=Oxyᙶ᪗-☢ᡈOxyᙶ᪗-☢Ḅ>&,?஺@ᐗᦪA&ᐗᦪBC◤⍳᯿G,HᑣI(1)ᑖMḄᑖNOP3(2)QᏔST᪷VGḄ⊤WMXYᜧ[ᡈ\[P3(3)]ᦪḄ^ᦪXYᜧ[P3(4)arcsinfi[x,y),arccosf(x,y)#ḄU(")I1஺(5)@_ᔠᦪ`a[ᵫ᜜dᑮfdgh஺i1.@GᑡᐗᦪḄூlᶧnV11040101I┐]p⚪rs௃224-x-f>0x2+j2<4%)={(")y2+z2{x2+y2<4|l}I>(2)y=ln(x-y)ூlᶧnVH040102I┐]p⚪rs௃

117y=ln(x-y)x-y>0,x>y0c/)={("),»}|l}{(")y<2,2cx+y4/2,2ஹy=arcsin-------------Fln(x+y)ব2ூlᶧnV11040103┐]p⚪rs௃x2+y2>00

118/3x+_y)=(x+y)&ṺD=஻,x+y=vf(u,v)=vf(x,y)=y()ᐗᦪḄ᩽▲ᦪz=f(x,y)ᙠ8ᱏ()Ḅ>&ᑁᨵP(x,y)pᑁ¡&8¢P(x,y)¡TM£¤[ᱏ()஺)`ᦪf(x,y)Ḅ¥£¤[&,¦Ḅ§ᦪA,ᑣA=ᦪz=f(x,y)¢8P(x,y)£¤[8ᱏ(x஺)`Ḅ᩽▲lim/(x,j)=Af0P=J("xp2+&lim/(r,7)=>lA஺()ᐗᦪḄµ¶ឋᦪz=f(x,y)ᙠ8ᱏ(¸¹஺)Ḅ>&ᑁᨵ¢pᑁḄ8P(x,y)¡TM£¤[8ᱏ(º/஺)`ᦪz=f(x,y)Ḅ᩽▲»ᙠ*\[pᦪᙠ8ᱏ(¼½)ᜐḄᦪᓽlim/(x7)=/(x,7o)oXT%ᑣᦪ2=À,)ᙠ8ᱏ(ÁX>)ᜐµ¶஺᝞Âz=f(x,y)ᙠ?DᑁḄÃ&,8(x,y)ᜐ¥µ¶ᑣᦪz=f(x,y)ᙠ?Dᑁµ¶஺ᐗᦪᐹᨵGឋÅI(1)ᐗµ¶ᦪḄÆஹÇஹÈɵ¶ᦪ஺ᙠᑖNOPḄ8ᜐµ¶ᦪÊᖪɵ¶ᦪ஺(2)ᐗµ¶ᦪḄ_ᔠᦪÌ=µ¶ᦪ஺(3)ᐗÍ\ᦪᙠᐸ¥=µ¶ᦪ஺(4)ᨬᜧ(¹)ᳮᨵÑÒ?DḄµ¶ᦪᙠ?DXÓÀÔᨬᜧAᨬ¹஺(5)ÕᳮᨵÑÒ?DḄµ¶ᦪᙠ?DXÓÀÔÕ[ᨬᜧAᨬ¹

119ÊḄ¡஺Ö⁚ØÙᦪAᐰÛᑖÜ-ÝØÙᦪ1.ᦪz=fHx,yNᙠ8ᱏÜ(XÝḄ>&Dᑁᨵ¢ÞßàxᙠX஺ÀÔᦋßà¼y=ãᢝOßᦪz=fHx,yNᨵBåḄᦋßàx=/Üæ+6%%N&/ܼ,XÝÝ஺.=/H+-"0Ý-஻"0Ýhmhm᝞¢Á-0`᩽▲ç஺Axè஺Ax»ᙠᑣS᩽▲ᦪz=fHx,yNᙠ8ᱏܺ,éÝᜐ]*ḄØÙᦪ஺&ᡈX=XQᡈ(d0¥0ÝëE஺îᳮ{Z=fHx,yNᙠ8ᱏHX஺/஺Ýᜐ]yḄØÙᦪᓽ᝞Â᩽▲.:m/Mm+3)-஻/)11ᒼߟ0Ay@r0Ay⊵=xHNᡈ%5%/dÝóᐔ᝞ÂfHx,yNᙠ?DᑁÃ&8¥ᨵØÙᦪ/Mõᑁ’ᑣ{ö+¸,ØÙᦪ÷ᐗᦪ§ÊØÙᦪøØÙᦪ஺2.ØÙᦪḄIᐗᦪz=fHx,yNᙠ8ᱏܼ,éÝᜐ]*ḄØÙᦪ/MçÝḄ=Iᙠ(☢2=ᵯúÝA-☢kABûḄ(ü5,ᓽ(ü2=/ý¹Ýþ8ÿ᝞"ᡠᑗxḄ᳛tanaIᳮᐗᦪz=fHx,yNᙠᜐyḄᦪf■'Ḅ!"#$ᙠ%☢z=fHx,yN'☢x=xHN()Ḅ%,2,ᓽ%z=/HXoJN+,-.,0,/%,4NNᡠᑗ3Ḅ᳛tan4஺

1203.ᦪḄ89:ᐗᦪz=f(x,y),;8z=f(x,y)xḄᦪ<=⌕?ᐗᦪ@ḄyABᦪ,.=⌕x8ᓽC஺ᳮ;8ᱏEx,y)yḄᦪ<=⌕?ᐗᦪ@ḄxABᦪ.=⌕y8ᓽC஺zGHIF19515:ூKᶧMN11040107$┐P⚪RS௃dxdzF2[9805]:z=QnyUᑣdx=ூKᶧMN11040108$┐P⚪RS௃W=(1nyUln(ln,y)y=.ylnIny.QnyZtdxA.^Qn/T-iB.Qny)°lnlny/(ln/)XJlnlnjD.xQnyyInlnyc[K\CdzF30005:z=sm(]2),ᑣ^=஺ூKᶧMN11040109$┐P⚪RS௃xycos(xy2)-xycos(xy2)AB-y2cos(xy2)y2cos(xy2)cD[K\D1z-,HF40014:®ூKᶧMN11040110$┐P⚪RS௃ᡭX/

12112[K\zydzz=e',——F50608dxdzxyxy—=ey=yeydxyz=ex,Hlj—qn=________F0114:^'''஺ூKᶧMNH040111$┐P⚪RS௃ae.2.20.1df(x,y)df(x,y)ff(?y,x-y)=x+y,ᑣ--------+--------=F69710dedx®ூKᶧMN11040112$┐P⚪RS௃/(wy)=0hE+29/(w,v)=h+2i1/(")=2x+1/=2,=2ydx------®df(x,y}df(x,y)-------------1-------------=2+2ydxdyA.2+2yB.2-2yC.2x+2yD.2-2y[K\A()ᐰlᑖ1.ᐰlᑖḄn"n"::z=f(x,y)ᙠP(x,y)Ḅphqrᑁᨵn"uvwxx,yḄᦋwxzᑍᑗ᝞|ᦪz=f(x,y)Ḅᐰᦋwxk=/(x+A"+Ay))C⊤~Az=-4Ax+5-Ay4-o(/7)22ᐸ@A,BᐵC#x,yḄᦪ;°=+᝞)70

122#0஺Ḅ▤xᑣ+B஽ᦪf(x,y)ᙠ(x,y)ᜐḄᐰlᑖdz,^dz=ALx+BLyᦪz=f(x,y)ᙠP(x,y)ᜐCl஺tAz=A,Ax+34y+o(Q)(Q-0)dy=+BLyττ=(\)%)8=3”,170)II&(.)=஺0Jo+(,%)4IIញ(᜜)=/&)^+,%)ḄIIdz=f{x,y}dx+fy^y'jdydz=A-Lx+BLyx᝞|z=f(x,y)ᙠrDᑁḄh(x,y)Clᑖᑣf(x,y)ᙠDᑁClᑖᵫCiAE᝞|z=f(x,y)ᙠDᑁClᑖᑣPlᑖn(x,y)Ḅᦪ஺(ᙢᦪz=f(x,y)ᙠ1஺/஺)ᜐḄlᑖCiᳮlᑖᦪdzᙠ“0/0)ᜐḄBdz2.ᐰlᑖᙠḄ⌕ᩩ¢ᐙᑖᩩ¢(1)ᐰlᑖᙠḄ⌕ᩩ¢:z=f(x,y)ᙠ(X஺J஺)ᜐClᑖᑣz=f(x,y)ᙠᜐḄ¤¥ᦪ/¦஺)'/§®஺,஺)nᙠ¨=/ᓰ0%)3=஻«,%)ᡈdz&A=—B=—dx®᝞|z=f(x,y)ᙠrDᑁClᑖᑣᨵ&,ydzX=ZQdyudxy=yoUᐔ᪵᝞|z=f(x,y)ᙠrDᑁClᑖᑣ

123dz=—dx-\----dydxdy(2)ᐰlᑖᙠḄᐙᑖᩩ¢dzdz~~~,nᳮ1᝞|z=f(x,y)ᙠP(x,y)ᜐᨵ±²Ḅh▤ᦪ³,ᑣz=f(x,y)ᙠP(x,y),dz,´az=—ax+—dyᜐClᑖ¨µ᝞3.ᐰlᑖḄ898z=f(x,y)ḄᐰlᑖḄ⊤¶¦Cᐜ8E¤¥h▤ᦪᯠ¹ºᐭᐰlᑖ¼¦ᓽC஺½⌕¾¿ᐰlᑖḄᑣ⌕?'ஹ0Ḅºᐭ?dxᵨAxஹᵨÂḄºᐭ஺22%ÃF1[0404]ᦪz=x+yᙠ(1,1)ᜐḄᐰlᑖoூKᶧMN11040201$┐P⚪RS௃dzdzÄ=2])=2dzdz.—=2Æ—/I-lx=2^^(D)È(1,1)=É(1,1)¼+9(1,1)=2dx+2dyA.dx+dyB.2dx+2dyC.2dx+dyD.dx+2dy[K]B2F2[0221^z=sm(x,y)+2x+y8E஺t(KᶧMN11040202$┐P⚪RS௃dz—=cos(D)y+4xdxdz—=cos(xy)-x+1,dz,dz.dz=——dx+——aydxdy=[4x+ycos(p)]d;v+[1+xcos(xy)]dyF3[9825]:z=xe'+sin(xy),8Ë஺

124ூKᶧMN11040203$┐P⚪RS௃z1=9+Ñ-V.ಔ)+cos(xy).y=e-xye+^cos(xy)1—zy=xe-(-x)+cos(xy)-x=xcos(zy)»dz-z*dx+zydy=[eṺ-Ô+.Xcos(A^)]d?x+[xcos(xy)-e'ᦑF4[9924]:z=f(2x+3y,eX),8dZoூKᶧMN11040204$┐P⚪RS௃Pdfdu^dfdvdf1nadxdudxdvdxdudvᒹᑏ2ᵱxy—=----3+-----&-xdydudvdzdzdz=——dxH----dydxdy=(—•2H-----ye)ax+(—•3H-----xe)aydudvdudv(Ø)Ùᔠᦪlᑖ91.ÙᔠᦪḄÛ¦9ᑣnᳮ$:ᦪu=u(x,y),v=v(x,y)ᙠ(x,y)ᜐᨵ±²Ḅᦪ஺ᦪz=f(u,v)ᙠ(u,v)ᜐᨵ±²ḄᦪᑣÙᔠᦪZ=f[u(x,y),v(x,y)]ᙠ(x,y)ᨵx,y±²ᦪ¨dz&du^dzdvdxdudxdxdzdzdudzdv———.—+—.—dydudydvdyi+¼¦ÙᔠᦪḄÛ¦9ᑣ2.áᱯãäåæḄÛ¦9ᑣ:æ☢áᱯãç¦èᔠ+énᳮ@Ḅᩩ¢$(1)᝞|z=f(u,v),u=u(x),u=v(x),ᓽz=f[u(x),v(x)],ᑣᦪZXḄᐰᦪ:dzdzdudzdv(2)᝞|z=f(x,y),y=y(x),ᓽz=f[x,y(x)],ᑣᦪzxḄᐰᦪ:

125dzdfdfdy---=-----+----------dxdx®dxz=Js”,ᵨëv=x+Æ8ìËF1.:Gxdy஺ூKᶧMN11040205$┐P⚪RS௃3zu9zu—=QsinV,—=QCOSV3udvdududvdv——1,——13xdydzdzdadzdv.uu---------------1-------------esinyy+®cosv13x3u3xdv3x=sin(x+y)+cos(x+y)]dzxy—=e/[xsin(x+y)+cos(x+y)]dy(î)◚ᦪlᑖ9i.hᐗ◚ᦪ:ᵫᐗñF(x,y40ᡠónḄ◚ᦪ4y(x),᝞|F(x,y)x,yᙠ±²ᦪ¨竺Ë=_ax竺3Fdx——w0办ᦔ,ᑣyxḄᦪ2.ᐗ◚ᦪ:ØᐗñF(x,y,z)=0ón◚ᦪz=z(x,y),᝞|F(x,y,z)x,y,zᙠ±²ᦪ¨9Fwdzydzdy"dxdy3F—0u——yᑣZXஹyḄᦪyᒹ஺dzF1[0225]:z=f(x,y)ᵫñõ+§+z=*ᡠón8஺ூKᶧMN11040206$┐P⚪RS௃

126dzdz2y+2z----=x(z+y—)1dz(2z-xy)—=xz-2ydzxz-2ydy2z-xyF(x,y,z)=/+/+z2-xyzdF~—=2y—xzdFdzdyxz-2ydy2z-xydzdzF2[0125]:z=f(x,y)ᵫñø=T+/ᡠón88x஺ூKᶧMN11040207$┐P⚪RS௃dF---=ZdxdFz——=x-&dzdFᵯ$$z.zdx3Fx-ez&z-xdzF3[0025]:z=f(x,y)ᵫñXᡠón8dz஺ூKᶧMN11040208$┐P⚪RS௃

127:F(x,y,z)+z^-2yezdFdFz8xṺ8Fz—=2z-2y&dzdzg2x_xxdxdF2z-2yezyez-2dyù2z-2yezz-ye,dzஹdzஹaz=——ax-\-----aydxdyzx,e-———dx+-------Ṻye-zz-yexdx-ezdyzye-zú▤ᦪ᝞|z=fx,yᙠrDᑁhx,yᜐᙠᦪ,ûüy“ᑣÿý¤¥ᦪþnᦪ஺᝞|ý¤¥ᦪḄᦪ´ᙠ,ᑣfx,yḄ▤ᦪ஺ddzz",ஹ=-0=/xxxjoxdxdxddz0z"d—=T-r-=f»xjdyoxdxq^ddz@z"d-==/yx"oxdyd^dxddzz"^^^2"dz0zdxdy'dydxfx,y▤ᔠᦪ஺

12822oazaozᳮ2᝞fx,yḄ▤ᔠᦪᙠDᑁᑣᙠDḄ!▤ᦪ"#$஺.2dz2-------%10305&=z=x+sm'ᑣdxdy=஺ூ)ᶧ+,11040209-┐/⚪12௃dzz—=2x,---=0dxdx®A.2x+cosyB.-sinyC.2D.O4)5D.2dz6ᑡ204148z=ycosx,9:J;<=஺ூ)ᶧ+,11040210-┐/⚪12௃4)5-sinx.2dz%300248Z=,?dxdy=஺ூ)ᶧ+,11040211-┐/⚪12௃dzIny-1—=lnyx/dx93z1Iny-l11ln^y-111-------=-x4-ln^y-xInx—dxdyyy=EJ"-11+lnxlnyy@AᐗCᦪḄ᩽Ei.ᐗCᦪ᩽E1G8Cᦪz=/xjᙠH᧊J,KAḄLMNᑁᨵGP/ᙠNᑁQRST᧊XoJoḄHUXJA,᝞VᨵW"PAY/PᵨAPᑣH᧊=⊈JoḄ᩽ᜧEHP/^_""AḄ᩽ᜧE`᝞Vᨵ஻"Ab/^_PᑣH᧊Ḅ‘J஻"AḄ᩽dEHP஻eJo஻"AḄ᩽dE஺2᩽EfᙠḄ"⌕ᩩiᳮ3᩽EfᙠḄ"⌕ᩩiA᝞Cᦪz=fx,yᙠHjX஺,klm᩽EPnᙠHḄᦪfᙠPᑣ"ᨵ£஽,ᙢ=0,r᝞_=0.

129stPuA=0,4P_=0xyᡂ{ḄH|JoACᦪ2=஻%7AḄHPᵫᳮPCᦪḄ᩽EHMHPPHM᩽EH஺%᝞z=xy,0,0A᩽EH஺3A᩽EfᙠḄᐙᑖᩩiᳮ4᩽EfᙠḄᐙᑖᩩiA8Cᦪz=/xjAᙠHeJ0AḄLMNᑁᨵḄM▤▤ᦪPnH᧊e'ACᦪ/ḄHPᓽ£ePA=°/PA=஺eP_=/P£`5_=£7PA=ᑣজR2-jc<0,n<<0ᡈC<0yP᧊J஺AḄ᩽ᜧEHP¦AW”PAḄ᩽ᜧE`ঝB2_¡C0ᡈC>0yPᱏJಘP“AḄ᩽dEHP“e_஻x,yAḄ᩽dE`ঞ/c>0yP“JJḄ᩽E஺ট§2M5c=CAyP/SoJ0A²᩽E`³²᩽EP⌕ᵨᐸ<µ¶·¸¹஺22%1403255?CᦪPxjA=4x_yA-x_JḄ᩽E஺ூ)ᶧ+,11040301-┐/⚪12௃4¼᪆5¼<¾¿。&-=4-2%=0,5ax&¥=-4-2y=01、mH2,-2A,ÀÁAÃa7ZlI2--2A=c’naÊ?ZIÌ-2A=oc=Ãd2ZIL-2A=-2B2-AC=-4<0,A=-2<0ᡠ/2,-2A=8᩽ᜧE.

1304)5᩽ᜧE/QP-2A=8%2.?Cᦪ/XjA=2x4_8x+y2Ḅ᩽E஺ூ)ᶧ+,11040302-┐/⚪12௃4¼᪆5¼<¾¿—=8X3-8=0dxmH1,0APÀÁd^zId^zIa?zI"ÕÌ'-°A=24,3=Ö|஺,஺A=0,0=Ã|1,஺A=M2B2-AC=-43<0,A=24>0ᡠØ0P°A=M6᩽dE4)5᩽dE,஺°A=-62.ᐗCᦪḄᩩi᩽E?Cᦪz=,ᑍᑁᙠᩩi°ᑍᑁ=0ÛḄ᩽EPᩩi᩽E஺ᩩi᩽E2⚪ÜÝᓄußàᩩiḄ᩽E2⚪Pá◤᪀⌼åæᨽèCᦪ-/3,2A=fx,y+2^x,y?¼<¾¿H=£"+M:"=Oಘ=£"A+é`3A=o஽=xjA=0¼êX,ëᐘPᑣᐸíḄHXJAîᙠz=/xPyAßàᩩi⊈XJA=oÛḄ²ïm᩽EḄ᩽EHᙶ᪗஺òÜᑨHx,yAᔲᡠõᩩi᩽EḄ᩽EHPÜ᪷÷ᡠõê2⚪Ḅø▭úGᑨ-᝞ᡠ?Ḅ“H''ûMPnø▭2⚪fᙠᨬᜧEᡈᨬdEAPᑣᡠ?Ḅ“H”x,yAî᩽ᜧEHᡈ᩽dEHA஺³ᡠõø▭2⚪ḄᨬᜧEHᡈᨬdEHA஺%1.?Cᦪz=N»ᙠᩩix+y=lḄ᩽E஺ூ)ᶧ+,11040303-┐/⚪12௃4¼᪆5᪀⌼åæᨽIICᦪ?¼

1318U(XJ,ᐘ)=/+y2+9+ᐘ(x+y-1)望&=2x+y+l=0,郎¥=2y+x+X=0,望=x+y-1=0.al2x=y=212ஹ2113ZFZ)+(2)+2X2=4ᡠ22᩽஺2.Ḅa,!ᑖ#$%&☢(ᨬᜧ+ூ-ᶧ/0110403041┐34⚪6௃s=1D8᪆:;Ḅ!ᩩ=Ḅᑖ#>ᑣ☢(2>@AᩩB2.22x+y=aF(x,y,X')=^-xy+Z(x2+y2-a1);2'.1F=—y+2xJL=0x■1᪷NO▭⚪QᨵᡠR>ᓽTUs=LῪ&☢(ᨬᜧ>Wᨬᜧ☢(a8-:!Ḅᔜ0&>☢(ᨬᜧ0YZ$ᐗ\ᦪ^ᑖ_`Jᐗ\ᦪ^ᑖ_Ḅabcde>fgᑁiᙠὃlm@ᓰ15%,@

13223ᑖop஺q⌕ᑁisZtu᝞w1Jஹᭆyzᑖ$ᐗ\ᦪḄᭆy>{|ᦪcᐰ^ᑖḄᭆy>~ᐗ\ᦪ᩽Ḅᭆy஺~ஹzᑖL1J•▤ஹ~▤{|ᦪḄ>ᐰ^ᑖḄ>◚\ᦪḄR|>~ᐗ\ᦪ᩽ḄR஺ஹᵨzᑖᩩB᩽ᓫᵨ⚪஺1~ᐗ\ᦪ^ᑖ_ὃl⚪$f⚪>஺gᭆ᳛8ὃl⌕R:1.ஹlḄfᱯL¡ᳮf£Bஹ᪵f¥¦ஹ£BḄᭆy஺2.§¨£B©¦Ḅᐵ«1ᒹᐵ«ஹ®Uᐵ«ஹ¯°®iᐵ«±3²ᐵ«஺3.ᳮ£B©¦³´µ¶ஹ·´(¶ஹ¸Ḅ¹º>§¨ᐸ¼஺4.ᳮᭆ᳛Ḅ½ᐺ¿¹º>§¨£Bᭆ᳛ḄfឋÁ±£Bᭆ᳛Ḅ஺5.ÂR£BḄᩩBᭆ᳛¡§¨ᭆ᳛ḄÃÄű£BḄƲឋ஺6.ÇÈḄᭆy±ᐸᑖÉ\ᦪ஺7.ᳮÊᦣឋÇÈḄ¹º±ᐸᭆ᳛ᑖɧ¨ᭆ᳛ᑖÉḄÌ஺8.ÂRÊᦣឋÇÈḄᦪ_ÍÎஹ̸µ᪗и஺8q⌕ÑÒᑁi:0⁚⚜ᜓÑÒ´Ö¶!×Øᳮ1.ᑖÙᦪØᳮ´ÚØᳮ¶ÛJB£>ÜᡂÞᨵnÙÌÅ>JÙÌÅᨵಗàÌ>~ÙÌÅᨵᱥ2àÌ>...,nÙÌÅᨵâ“àÌ>äᑭᵨæàÌÅḄæàÌçèÜᡂéB£>êëÜᡂéBnH------1•ì=£⍎£ḄÌsᦪ-Io2.ᑖᦪØᳮ´ÃØᳮ¶ÛJB£>ÜᡂÞᨵn×ï>J×ïᨵಗàÌ>~×ïᨵᤊ2àÌ>...>n×ïᨵÚ“àÌ>QñòóᡠᨵïôõÜᡂéB£>êëÜᡂéB£ḄÌsᦪnxḄx…x%=ö÷1=1஺᝞>ùúᵫᵬᙢòóþᙢᑮᙢ஺⌱Ḅᐹᦪ᝞ᵫᵬᙢᑮᙢ,6ஹ5ᵫᙢᑮᙢ43஺ᑣᵫᵬᙢᑮᙢḄᦪ!

1336+5=11()ᵫᙢᑮᙢḄᦪ!4+3=7()ᵫᵬᙢ-.ᙢᑮᙢḄᦪ!(6+5)x(4+3)=77(4ூ1ᶧ3411050101┐78⚪:;௃(=)᣸ᑡ1.ABCnEFGᐗIJKLm(m

134(C)156(D)169ூ1ᶧ3411050102┐78⚪:;௃=13x12=1561(C)஺(2)ᓝ¡G¢£¤ᓱ¦§ᐸ©Gᔜ«W¤ᓱQ¬~©®ᐳ«W¤ᓱḄ¬ᦪ¯()(A)50(B)100(C)(D)90ூ1ᶧ3411050103┐78⚪:;௃°᪆²³⚪´⌕ὃ·᣸ᑡḄᭆ¹r᣸ᑡᦪcdef஺ºᑖ5ᑖ஺ᓝ¡G¼½¢£¤ᓱᨵ«ᓱ¾ᦈᓱ¼ᑖᓽᨵRSឋÁ᣸ᑡ;⚪஺10EFGᐗI¦L2EᐗIḄᡠᨵFG᣸ᑡEᦪ!=10x9=90ᦑ⌱(D)஺(3)ᵨ1,2,3,4,5,6uᡂÄᨵpqᦪÅḄFGḄt¡ᦪᐳᨵ()(A)120(B)60(C)20(D)216ூ1ᶧ3411050104┐78⚪:;௃°᪆²³⚪´⌕ὃ·᣸ᑡḄᭆ¹r᣸ᑡᦪcdf஺ºᑖ5ᑖ஺~P+~¢Æ!t¡ᦪᨵE¡ஹᓝ¡¾Ç¡¼ᑖᓽLWḄtEᦪžÈÉRSᨵᐵᡠr˯᣸ᑡ;⚪ᵫ᣸ᑡᦪefÌË᪵FGḄt¡ᦪᐳᨵ()¡—6x5x4=120ᦑ⌱(A)»2.⌱⚪(ᨵ▲ᑴᩩÒḄ᣸ᑡ;⚪)(1)ᵨ0,1,2,3uᡂÄᨵpqᦪÅḄÓ¡ᦪᐳᨵ()(A)6E(B)12E(C)18E(D)24Eூ1ᶧ3411050105┐78⚪:;௃°᪆²³⚪´⌕ὃ·᣸ᑡÔᭆ¹?᣸ᑡᦪ”de×஺ºᑖ5ᑖ஺ᓟ|¥|ᓝ|¢Æ!Ó¡ᦪᨵE¡ஹᓝ¡ஹÇ¡¾ᓟ¡¼ᑖᓽLWḄÓEᦪžÈÉRSᨵᐵᡠr˯᣸ᑡ;⚪஺Ù⌕ὃ⇋ᦪÅ0FÛᙠ✌¡ᑖÞßᡂà᣸ᑡᦪefÌË᪵FGḄÓ

135¡ᦪᐳᨵ4.á=3x6=18ᦑ⌱(C)»(2)ᨵ5âᔜFãGḄäåæçèé᣸ᡂQêᐸJᨵ2âäåᩭìGQᔆîᑣï2âäåាñãòḄ᣸óᦪ!()(A)24(B)48(C)120(D)60ூ1ᶧ3411050106┐78⚪:;௃°᪆²³⚪´⌕ὃ·ᨵ▲AᩩÒḄ᣸ᑡ;⚪r᣸ᑡᦪcdef஺ºᑖ5ᑖ஺¾ô=24x2=48ᦑ⌱(B)o3.⌱⚪(uᔠ;⚪)(1)õᓝEᑖᡂuQuö÷Qutᑖᐳᨵ()(A)=+4(B)GoGo(C)G7஺(D)ø0ூ1ᶧ3411050107┐78⚪:;௃cio=û7=4ᦑ⌱(C)o(2)C15EJ⌱2Eü⊤ᡠᨵÛḄFG⌱ᦪ¯()(A)15(B)30(C)105(D)210ூ1ᶧ3411050108┐78⚪:;௃ᕖᚆ=1052x1ᦑ⌱(C),(3)503Ḅᐳᨵூ!ᶧ#$11050109'┐)*⚪,-௃50x49x48=196003x2x1

136!'1960004.⌱3⚪(ᨵ▲ᑴᩩḄ7ᔠ-⚪)(1)7:ᵱ<=5:᝕<⌱?⊤5A7ᡂ?⊤Cᐸᵱ<3:᝕<2:ᑣḄ⌱ᐳᨵ()(A)45(B)350(C)792(D)4200ூ!ᶧ#$11050110'┐)*⚪,-௃7x6x55x4*K=—=35x10=3503x2x12x1ᦑ⌱(B)(2)LM7ᐳᨵ10:N<ᐸ᝕<3:O⌱P2AQ?⊤⌕STᨵU:᝕

137ᙠk⚗mstm✌””Ḅ⚗Ḅk⚗m|ᦪ᝞bk⚗mḄᢣᦪYᏔᦪefU⚗Ḅk⚗m|ᦪᨬᜧ᝞bk⚗mḄLᢣᦪY᜻ᦪef⚗Ḅk⚗m|ᦪᨬᜧ஺ᐺ0⚪01.(Sᢣn⚗)(/+(1)XḄstmḄᦪ⚗()(A)6(B)12(C)15(D)30ூ!ᶧ#$11050113'┐)*⚪,-௃!ᫀ'C᪆¢⚪£⌕ὃ¥`ᵨk⚗mḄ⚗mSᢣn⚗஺§ᑖ5ᑖ஺4+1=©(/.(=©/3x,«12-3r=0r=44s=15ᦑ⌱(C)o(2)37*Ḅstm®Ḅ|ᦪY()(A)56(B)-56(C)-56a5(D)56a$ூ!ᶧ#$11050114'┐)*⚪,-௃!ᫀ'CU⁚±²³(U)±²³᪵¢µ1.±²O¶(1)·nឋO¶ᙠUnᩩ¸³ᐜº»¼½¾ᯠ`À

138ÞßᑖÝYẆáâãä哾ᯠO¶''ḄᦪçèéêᐸëᙠìmḄUíᦪNᑖî஺ï2ð±²O¶ᙠUnᩩ¸ÁbñUíòó³ᐜô¼½õÁbÀ<ḄO¶Ä±²O¶஺)ö±²O¶Aóᐜô¼n÷øÀ<õUÁb⊤☢úûᐸÁbYᏔᯠឋᙠüîýþᵨᐸÿᯠ⊤ᙠᩩᕈឋᓽ"#ឋ஺ᭆ᳛'(ᦪᳮ"#+,Ẇ./ᐸ"#ឋḄ23ᦪ4ᑖ6஺2.:;<2=>ᡈ2:;@A:;B@A:;஺:;ḄCDᱯF,G1Iᙠᩩ:;JKGLᏔᯠឋING2IO:;ḄPQᐹᨵJTឋUVᙠ:;WTXᡠᨵJTPQGJZឋING3IO:;W\]^Xᙢ⚜ab:;cdef2PQGXgឋI஺:;2hᵨᜧᑏlmE⊤o஺3.᪵Dqr(᪵DsG1ICDt:;O2JTḄuvPQᓽTwᑖxḄt@ACDtyAG2I᪵Dqr:;EḄᐰ{CDtᡠ᪀ᡂḄ~ᔠ@A᪵Dqr஺CDt@A᪵Ds஺2hᙢ᪵Dqr⊤oA=G%4.tஹᯠtஹJTtG1Itᙠ:;JTḄPQ@AtG@tIᵨlmA,B,C...⊤ot஺G2IᯠtᙠO:;ᯠdeḄt@Aᯠt஺ᯠᯠt,ᵫtḄᐰ{JTPQᡠᡂᦑC,ᯠt஺G3IJTtᙠO:;2gdeḄt@AJTtJTt,ᒹ:;PQḄtᵨq~Ḅ”ᩭ⊤o஺1.ᑏᑡ:;஺=",34$¢Ḅ᪵DqrG1I/c2¤¥¦§¨©=>ª☢ஹ¬☢Ḅ®Nூ°ᶧ²11050201┐ᐸḄsᦪNூ°ᶧ²11050202┐

139(3)¥:ÇÈᨵ²A1,2,3,4,5Ḅ5ÉᳫËÌ2Éᳫ#ÍÎÏ,=>ÐÌḄPQNூ°ᶧ²11050203┐×ØÙᡠᨵJTᢗᐭḄPQ;ூ°ᶧ²11050204┐ᡠᨵJTPQ;ூ°ᶧ²11050205┐

1403.ḄKLMᡈKN@OP᝞&AEBNQJR-(.ᓽAEBNᒹ$SᐳḄ᪵2.ᑣ7AEBKLḄMᡈKN@OP஺Uᯠ.ᔜWXKN@OḄ஺4.YZMᡈK⌮P“]A”.7AḄYZ^_Mᡈ7AḄ⌮P.`ᵫ᪵5ᡠᨵNb8AḄ᪵2cᡂḄeᔠ.9gUᯠh=A஺5.ḄMiPAEBjkᨵl-(Ḅ.7AEBḄiMP.9AUBMᡈA+B,`ᵫb8Aᡈb8BḄᡠᨵ᪵2᪀ᡂḄie஺n&&•••,45jkᨵl-(pl.7442qஹ4ḄiMᡈP.94UU…U4Mᡈ4++…+4P.ᡈu9vMᡈvP஺6.ḄwMxPAEBJR-(Ḅ.7AEBḄxMᡈwP.9ACIBMᡈAB,`ᵫyb8ABb8BḄᡠᨵ᪵2᪀ᡂḄeᔠ஺n4,42,….4JR-(pl.74,z.….4ḄxMᡈwP.9{nna»4nan…nqMᡈ4,&….4P,u92Mᡈ|”P஺ᵫḄiExḄO᧕ᑮAEBKL஺41"!5=AEBYZQAU&=c,B4|&=AEBKL"AEBYZ7.ḄA-(BN-(஺pl.7AEBḄ.9A-B,`ᵫb8ANb8BḄ᪵2᪀ᡂḄeᔠ஺Uᯠ4-=4=ᨴ-4g=G=ᨴ஺8.ᐸEeᔠᐸXḄᐵᭆ᳛5XḄᐵᐸEeᔠ5eᔠXḄᐵEl,Ḅ.ὅXḄYᐵ᝞⊤ᡠᭆ᳛eᔠQ᪵ᐰeNQe(DWeᔠḄᐗAeAAḄYZAḄe

141A-(+,A(^BABḄeB-(A=BAEB@AeᔠAEB@AAEBA\JBAEBḄiejkᨵl-(AC\BAEBJR-(AEBḄxeA-BA-(BN-(AEBḄehng=eAEBKN@OAEBᨵ@Jᐗᵫ83ᵨ᪵a5Ḅ¢eᔠᩭ⊤.8Ḅᐵ¤ᵨeᔠḄ¥¦ᩭ§⊤.¨©ª.ᵨeᔠḄ«឵ᩭ⊤Ḅᔜᐵ®ᑣ.l¯ᵨ¢°±²³⊤᪵.´²³Ḅl²³⊤¢஺8ᔜḄᐵ᝞5Ḅᡠ஺ᔜḄᐵ᝞9.Hᜓcnᑁ,4,᝞&¸¹ºᑡᩩ:AUAU-U4=^(1);(2)4nA=©Q#=1,2,…Å.ᑣ7ᐸHᜓc஺UᯠÆÇlAEᐸYZ¨᪀ᡂHᜓc஺10.ḄÈᑣ(1)xᣚÊ4U8=8UA"l8=8nᨴ)ÌᔠÊ(4U6UC=HU(EUG(2

142anBPnc=>inMBn.ᑖÔÊMÕuᑗnc=MRnouMEncPM3PMHn6Uc=MHUGnMBUGYᏔÊMÚ=4nKÛÜ=zuM4PÞ2.ßlᢇqá5âãlqáäÛNåæMᓽçèéãḄqáNêåæ.ëçèéãḄqáêåæ.ᑣ7åæP.4•⊤ìièâᑮíáMi=l,2,3P,ᵨᦻïðñºᑡi°41Pzóூõᶧ÷11050207┐Y´⚪üý௃ÿ4U«Uᙳ⊤ᨵᑮ2°AM2aூᶧ11050208┐"#⚪%&௃(4y⊤ᑮḄ+,30./Uὡ/U/1ூᶧ11050209┐"#⚪%&௃(^⊤4ᨵ5ᑮ4°/7ὡ14ூᶧ11050210┐"#⚪%&௃(A8AU4AAUᜐAA⊤4ាᨵᑮ஺32323<3.>ᢇ@4AB@CDEFGHIJᓽLMAḄ@ENFGOPLMAḄ@NFGOᑣRSFGHITOUV4⊤WiᑮJᔠZi=l,2,3T,Hᵨ4,_O`⊤aᑡUV1°+ᑮூᶧ11050211┐"#⚪%&௃(ᑁdᙳ+ᑮOᓽOeBUV7fghO⊤Siᙳ432°4ᨵ5ᑮூᶧ11050212┐"#⚪%&௃

143(4ᨵ5ᑮOjᕡḼWmWnᑮJ4,2T,WmWᑮJ44T,WnmWᑮJSoTOeBUVᨵBghO⊤S44U4`U4p?4rᨵᑮூᶧ11050213┐"#⚪%&௃(4rᨵᑮOᓽាᨵ•ᑮ஺jᕡḼᑮḄB@4rᨵB,Otᐸv5B,Oᦑxy⊤S44஽{U4E|4°4}ᨵ••ᑮ஺ூᶧ11050214┐"#⚪%&௃(4}ᨵ•ᑮOjᕡḼ4~ᨵᑮJᓽᐰ,TᡈrᨵᑮOᦑxy⊤S4ᙳὡ44444஺<4.⌱⚪J1TAஹBஹCஹ,BUVOAஹBஹC4ាᨵ5BUVghḄU⊤SJTA.A+B+CABC+JiBC+ABCBC•/!+R+CABC+ABC+ABCDூᶧ11050215┐"#⚪%&௃DJ2TA,BS5UVOᑣaᑡᡂḄ,JT,A.4+3=A-\-BB.AB=ABC.ᨴ+B=3+AB0X+S=5+ABூᶧ•11050216┐"#⚪%&௃CJ3TᵬஹnOAஹBᑖ¡⊤ᵬஹ4¢᪗ḄUVON+B⊤JTA.n+~4B.ᨵ~4

144C.n+4D.ᨵ4ூᶧ11050217┐"#⚪%&௃BWn⁚UVḄᭆ᳛ஹᭆ᳛Ḅ©ª«¬1.⚣ᦪ¯⚣᳛«¬ᙠ±7ᩩVaCDn´µHIO᝞·UVAgh¸kOᑣRk¨yJXT=—SUVAghḄ⚣ᦪO»¼▀RSUVAghḄ⚣᳛O¾¿S6T,ᓽ"▀஺ᑡ᝞OᔊÂÃÄᨵ¿ÅÆÇÈÉḄᜧË´µHI஺᝞a⊤ᡠ:HIὅÇÉᦪn☢AÐᦪk☢AÐ⚣᳛k/nÑ•᥅᪷204810610.5181ÔÕ404020480.5069Ö×Ø1200060190.5016Ö×Ø24000120120.5005ÙÚ30000149940.4998>Ã⊤xyÛAO`HIᦪ⌲ÝÞ}fO☢AÐḄ⚣᳛¼,ß«ḄOàᙠ0.5▬â᤮ä஺2.ᭆ᳛Ḅ©ª«¬«¬ᙠ±7ᩩVaO´µCDnHIOUVAghḄ⚣᳛ß«ᙢᙠæçᦪp▬â᤮äOtéêëᩭOnៜᜧO᤮äḄîïៜðOᑣRçᦪpSUVAghḄᭆ᳛O¾¿PJAT=pnஹᭆ᳛Ḅòᐺ«¬1.òᐺᭆô᝞·HIᐹᨵ᝞aö⌕ᱯùJ1TJᨵ▲ឋTLHIrᨵᨵ▲BxüHIý·Oᓽ᪵ÿᡠᒹḄ᪵Ḅᦪᨵ▲஺2ឋ!Ḅឋ"ᐰ$%஺ᐹᨵ'()ᱯ+Ḅ,-.ᐺᭆ1஺2.ᭆ᳛Ḅ.ᐺ56567ᙠ.ᐺᭆ19᪵ᡠᒹḄ:ᦪ-n,AᒹḄ>ᨴ=Aᦪ-m,ᑣA!Ḅᭆ᳛-«஺D1.F)GᙳᒴḄJKLMN“PQPR”Ḅᭆ᳛஺ூUᶧWX110503017┐]^⚪`a௃cd᪆f:ᦪ-2?=4C=jQRRQQQRRklA7“MNPQPR"m=2

14521p(A)=-=-ᑣ42D2.nopF)qᙳᒴḄrsMNḄᦪtu-8Ḅᭆ᳛-()ூUᶧWX110503027┐]^⚪`a௃cd᪆fnopF)qᙳᒴrsḄxyᐗ{Ḅ᣸ᑡᐸ:ᦪ-36ᓽ12345611,11,21,31,41,51,622,12,22,32,42,52,633,13,23,33,43,53,644,14,24,34,44,54,655,15,25,35,45,55,666,16,26,36,46,56,6P!Ḅឋ$%ḄᐸMNḄᦪtu-8Ḅ=(,lA7“MNḄᦪtu-8“I36,ᦑ⌱(B)஺lX7“)qrsMNḄᦪtu”ᑣk23456789101112m12345654321P(X=k)%6%%6%6%6%%6%6ஹᭆ᳛Ḅឋᑣឋ1.0P(A)+P(B)

1462.]n-A,ᨵp(&=1->ভ3.]noA,B,C,ᨵP(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)c05.10f¡AḄPA=0.6,ᑣAḄ]£AḄᭆ᳛>ভ=04«ூUᶧWX110503037┐]^⚪`a௃D3.¥¦ᨵ4§¨ᳫ2§ªᳫ«¥n¬ᳫ)¬1§ᑖ)®¯°1ᨵ±²³¬´2µ±²³¬ᙠ'()®¯°¶L¶ᑡḄᭆ᳛জ¬ᑮ2§¨ᳫ´ூUᶧWX110503047┐]^⚪`a௃ঝ¬ᑮ2§¹⁐$%Ḅᳫ´ூUᶧWX110503057┐]^⚪`a௃ঞ¬ᑮḄ2§ᳫ¼½ᨵ1§¨ᳫ஺ூUᶧWX110503067┐]^⚪`a௃cd᪆flA7“¬ᑮ2§¨ᳫ”B7“¬ᑮ2§ªᳫ”C7“¬ᑮḄ2§ᳫ¼½ᨵ1§¨ᳫ”஺1ᨵ±²³¬44164জªভ—x—=—=D663692241P®=—x—=——=—66369415ঝª(4+3)=P(4)+2(3)=]+´=/—12ঞ9(ঢ=P(JB)=1—9(B)=1—§2µ±²³¬43122জª(4)=—x—=—=—653052121P«—x—=—=—653015217ঝ(ᨴ+=ᡝ(ভ+20)=(+t=5ঞP(C)=P(B)=1D20)=1-°᨟D4.)ÆÇÈÉᙢᢗᐭ᪗X-1,2,3,4Ḅ4ÍÎᑣ1,2XÍÎᔜᨵPÆÇḄᭆ᳛Ð

147ூUᶧWX110503077┐]^⚪`a௃cd᪆flA7“1,2ÍÎᔜᨵPÆÇ”஺:ᦪÒ=4=16,AᒹḄᦪm=2!=2,ᑣḄ16Mᦑ⌱C஺D5.ÕᵯᾯØÙÚἠ(36⌱7)ᝄᭆ᳛᝞¶⊤ூUᶧWX110503087┐]^⚪`a௃ᝄ⚗⌱ᦪáâãᝄᭆ᳛ᱯ1]*******⌱77ᝄ568347680.******6Q⌱X+ᱯCå7_1ᝄ೙X5683476801192526æ******Cç9203_16Q⌱Xᝄ%8347680411225Q⌱X+ᱯc2;Ck9609_1*****೙ᝄX'8347680137075Q⌱XᡈèU7U29τ^7^1^2922736_14Q⌱X+ᱯᝄ****೙¬ê68347680—367Xë****4Q⌱Xᡈ433í13255780_15^291^7^1^293Q⌱X+ᱯᝄ***೙ᡈ48347680-33■)î⁚ᩩᭆ᳛ஹñஹḄò£ឋPஹᩩᭆ᳛5617lᨵA,B,óP(B)>0,,Pভ᝾°õöᙢ᝞÷P(A)>0,ᑣB]AḄᩩᭆ᳛-

148D1.%øF)⚩ᙳᒴḄrsᙠMNḄᦪtu-7Ḅúᛀ¶ᨵ•⚩rs-1Ḅᭆ᳛½஺ூUᶧWX110504017┐]^⚪`a௃cd᪆flA7"ᦪtu-7”B7“ᐸP⚩-1”஺A:{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}AB:{(1,6),(6,1)}212(3|ᨴ)=±=91:63221P(AB)1p(BIA)=_18_162.ᨵ10ᩈᳫ6ᴻᳫᩈᳫᨵ3!":⁐7!%⁐ᴻᳫᨵ2!&⁐4!%⁐஺)*+,-ᳫᵨA⊤0“,ᑮ%⁐ᳫ”B⊤0“,ᑮᴻᳫ”,4P(B|A)oூ9ᶧ;<11050402┐?@⚪BC௃᪆Fᑡ⊤ᑖ᪆IJᩩᩈᳫᴻᳫLM&⁐ᳫ325%⁐ᳫ7411LM10616114P(A)=—P(AB')=—>16164\17PN111116Oஹᭆ᳛ḄTUVP(A3)=(P(5)>0)P(AB)=P(A)P(B\A),(P(X)>0)TUVWXYᑮᨵ▲[Ḅ\]᝞?A,B,C,ᨵ

149P(ABC)=P(A)P(B\A)P(dtAB)P(A)=1,P(B)=-,`a3.bcAஹB,IJ2324P(A+B)஺ூ9ᶧ;<11050403┐?@⚪BC௃d᪆FP(AB)==l1117P(A+B)=P(A)+P®-p(AB)=l+A-i=_LgஹḄhiឋ,kᙢmP(A|B)n(A),ᓽmpBḄqrstuAqrḄᭆ᳛஺vP(A|B)#P(A),ᑣmpBḄqrᙠᭆ᳛z{|?AḄqr}ᐵA,Bhi஺{?A,B,vP(AB)=P(A)P(B),ᑣABhi஺d06.10FvABhi`P(A)=0.4,P(B)=0.5,ᑣP(AB)=P(A)xP(B)=0.4x0.5=0.2»ூ9ᶧ;<11050404┐?@⚪BC௃ᳮvABhiᑣNB,ANᔲhi஺4.A,BhiIJP(A)=0.6,P(Ba0.8,4ABាᨵ-qrḄᭆ᳛஺ூ9ᶧ;<11050405┐?@⚪BC௃d᪆FP{AB+AB)=P{AB)+P(AB)=±A)P®+P(A)P(B)=0.6x(l-0,8)+(l-0.6)x0.8=0.445.ᵬஹᔜὃᜧḄᭆ᳛ᑖ!70%,80%,4ᵬஹᨵ-ὃᜧḄᭆ᳛஺ூ9ᶧ;<11050406┐?@⚪BC௃d᪆FA“ᵬὃᜧ”B“ὃᜧ”P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)=0.7+0.8-0.7x0.8=0.94d06.25Fᵬஹ¡¢᪗ᭆ᳛ᑖ!0.8ஹ0.5,4-¡¢᪗Ḅᭆ᳛஺ூ9ᶧ;<11050407┐?@⚪BC௃A“ᵬ¡”B“¡”P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)xP(B)=0.8+0.5-0.8x0.5=0.9¤ஹhi¥¦§ᑡᭆ¨ᙠ©Ḅᩩ|hiª«¬n¯¥¦°¯¥¦AW±qrᡈW±³qr,`AqrḄᭆ᳛!p,ᑣᙠn¯¥¦Aាµqrk¯Ḅᭆ᳛!

150P(k)=cipk(l-p)n-k(k=o,l,2/-,n)n6.¸℉º»ᳫ¼½ᕒ°¯ᢗ»Ḅᢗ᳛!0.8,4)ᢗ»10¯À8¯Ḅᭆ᳛஺ூ9ᶧ;<11050408┐?@⚪BC௃d᪆FJj(8)=Ãx0,88(1-0.8)10-8=0.3020Ĥ⁚-ÆbcÇÈÉᐸᭆ᳛ᑖË(-)bcÇÈ1.bcÇÈ{஺!᪵ÍÎÏ᝞Ð?°-W±ÑÐÒ=0,ÇÈXᨵ-ÔḄÕᦪ×Ø?Ùᑣx!{ᙠ஺ḄbcÇÈÚÛÜx(ᡈ7)஺2.Ýᦣ¨bcÇÈ{᝞ÐbcÇÈXß±,ᨵ▲ᡈ}▲Wᑡᦪ×ᑣX!Ýᦣ¨bcÇÈ஺(-)ᑖËàᦪᭆ᳛ᑖË1.ᑖËàᦪ{Xá-bcÇÈxá+zÕᦪᑣàᦪ9â(-8

151ᭆ᳛ᑖµḄឋ·2132¸¹ឋNº~20~=஺,2,…32232»ឋNZ½=13.ᑖᦪ7ᭆ᳛ᑖ89Ḅᐵ;¾x)=P(XWx)=Z¿>Xᦣ?ᑣ஺@1.ABCᨵ6Fᳫ?ᐸC1Iᳫ3J?2Iᳫ2J?3Iᳫ1J?ᙠᐸCLMNJᳫ஺&X⊤,MOḄᳫḄ᪗ṹ?RXḄᭆ᳛ᑖ7ᑖᦪ஺ூTᶧVI11050501-┐YZ⚪\]௃_`᪆bXNᑗ%d1,2,363ᖝ=33="XḄᭆ᳛ᑖ121/21/3XḄᑖᦪfox3@2.ᨵ3mn2Jop?qnᢗᐭopC?ᵨX⊤,“ᨵnḄopᦪ”?RXḄᭆ᳛ᑖ7ᑖᦪ஺ூTᶧVI11050502-┐YZ⚪\]௃_`᪆bXNᑗ%d1,2,_2_£=2342{3F(X=2}C=-XḄᭆ᳛ᑖP1/43/4

152XḄᑖᦪ0x2()Ḅᦪᱯ1.ᦪ(1)ᦪḄᭆ-Xᦣ?ᐸᭆ᳛ᦪ(k=l,2,3,-)XkPkfXkPk>ᦪQYᦈ?ᑣXḄᦪ?ᡈᙳ?EX,EX=2W=xlPl+x2P2-+xkPk+-k(2)ᦪḄឋজ>Cᦪ?ᑣE(CCঝ>aᦪ?ᑣE(aXaE(X)ঞ>bᦪ?ᑣE(X+b)=E(X)+bট>X,Y?ᑣE(X+YE(X)+E(Y)2.(1)Ḅᭆ-X?᝞MNᓽ2ᙠ?ᑣM¡Nᓽ2XḄ?DX,ᓽ“=ᮞ¡-£)2Ḅ¤¥¦᪷ᙳᡈ᪗¨?µ'ᓽBX=ª=¶X-m)2Y«ᦣx,᝞xḄᭆ᳛ᦪ¬"=஽)=᜜ᾓ=12…/?ᑣXḄQT(2)Ḅឋজ>Cᦪ?ᑣD(C0ঝ>aᦪ?ᑣ±+2)=&Dভঞ>bᦪ?ᑣD(X+b)=D(X)ট&=´¡2)_(µ2@1.¶bxḄᭆ᳛ᑖ

1530012Pika0.20.5(1)RaḄ-ூTᶧVI11050503-┐YZ⚪\]௃(2)REX~ூTᶧVI11050504-┐YZ⚪\]௃(3)RDX஺ூTᶧVI11050505-┐YZ⚪\]௃[`᪆](1)a=l-(0.2+0.5)=0.3(2)EX=OxO.3+lxO.2+2xO.5=1.2ব£)Y=(0-1.2)2X0.3+(1-1.2)2X0.2+(2-1.2)2X0,5=0,76ᡈὅ᝞(`-DX=EX2-Eব2X2014p0.30.20.54=0x0.3+1x0.2+4x05=2.2DX=EX2-(£Z)2=2.2-(1.2)2=0.76[2][0525]XᑖᑡX123P0.2a0.5(1)Ra=?ூTᶧVI11050506-┐YZ⚪\]௃(2)RXḄEXூTᶧVI11050507-┐YZ⚪\]௃`:(1)a=l-(0.2+0.5)=0.3(2)EX=1X0.2+2X0.3+.X0.5=2.3@2.XḄஹᑖÅE(X),D(X),ÆY=aX+bᑣᨵE(YD(Y)=஺ூTᶧVI11050508-┐YZ⚪\]௃_`᪆b(1)EY=E(aX+baEX+b,(2)DY=D{aX+b)=a1DX@3.ÉÊE(X)=-1,D(Xᡝ3,R*[3(¡2-2)]ூTᶧVI11050509-┐YZ⚪\]௃[`᪆]E(X2)=DXÎQ2=3+(-1)2=4+E[3(XZ-2)]=3[£(Z2)-2]=3(4-2)=6

154@4.ÏCÐᨵᑖÅ᪗1,2,3,4,5ᦪḄᳫ?ÑCLM3J?ᵨX⊤,ᡠM3ᳫCᨬÔḄᦪ?(1)RXḄᭆ᳛ᑖ~ூTᶧVI11050510-┐YZ⚪\]௃(2)EX,DXூTᶧVI11050511-┐YZ⚪\]௃_`᪆bXNᑗ%d1,2,3(1)P{Z=l}=^-=—=-Ø105P{X=2}=*=ÙÚ1011P(Z=3)XḄᭆ᳛ᑖX123P3/53/101/10(2)…?3c3cl153EX=lx-+2x—+3x—=—=—51010102£Z*2=lx24x—+9x—27+5101010DX=E#Ü227,3-91020

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭