《A Fault Phase Selection for Distribution Network Based on Correlation Coefficient of Three-phase Transient Voltage》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
2018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018AFaultPhaseSelectionforDistributionNetworkBasedonCorrelationCoefficientofThree-phaseTransientVoltageXIAOYANHAN1,QINREN2,QINSHU3(1StategridSichuanElectricPowerCompany,Chengdu610041,SichuanProvince,China;2StategridDazhouSupplyCompany,Dazhou635000,SichuanProvince,China;3CollegeofElectricalEngineeringandInformationTechnology,SichuanUniversity,Chengdu610065,China,SichuanProvince,China)[1]-[5]anddeltavariable[6]-[11].Thesequence-componentAbstract—Fortheproblemoffaultphaseselection(FPS)inmethodsusethephasorrelationshipofsequencecomponentstodistributionnetwork,amethodbasedontransientvoltagedeterminewhichphaseisfailure[1]-[3].Thewayscannotstarttravelingwavewasproposedinthispaper.Themethodutilizedworkinguntilonepowerfrequencycycleafterfaultoccurs.thecorrelationrelationandenergyrelationofthree-phaseAnotherdrawbackofthesequence-componentmethodsisthattransientvoltagetravelingwavetoestablishthecriteriaforidentifyingfaultphase.Byusingtransienttravelingwave,thetherearenozerosequenceandnegativesequenceformethodhadtheadvantageofhighspeed.TheFPSalgorithmwassymmetricalthree-phasefault[12],thustheoreticallytheconciseandfeasible,andtheadoptedlengthofdatawindowwassequence-componentmethodsfailtoidentifythisfaulttype.oneoverfortyofthepowerfrequencycycle.SimulatedresultsonInstead,thedeltavariableapproachesconfirmfaultphaseontheplatformofPSCADshowedtheeffectivenessofthepresentedtherelationshipofphasecurrentdifferenceundervariousfaultFPSmethod,whichwasexcellentinaccuracyandspeedconditions[6]-[8].Inthisregard,thereisexistingaFPSwayregardlessofthefaultlocationorthetransitionresistanceunderdifferentfaulttypes.thatreliesontheratioofphasecurrentdifferencesineachtwophases[9].Inaddition,themethodsofmutationalvolumealsoIndexTerms—Distributionnetwork,faultphaseselection(FPS),includebreakphasevoltagevariableandvoltage-currenttransientvoltagetravelingwave,correlationcoefficient.comprehensivebreakvariable[10],[11].Thedeltavariableapproachesaskonepowerfrequencycycletoidentifyfaultphase.I.INTRODUCTIONWiththedevelopmentofthehardwaretechnology,highNpowergrid,oncealinefaultoccurs,theaccurateandfastfrequencytransientfaultsignalinpowersystemcanbeIFPSisthepreconditionofbothfaultlocationandthepropercollectedonline.Byusingtransientsignal[13]-[17],thedataoperationofrelayprotectiondevices.ComparedwiththewindowlengththatFPSmethodneedscanbefarshorterthantransmissionlines,distributionnetworkwithmorebranchesonepowerfrequencycycle,thereforethespeedofobtaininganddirectlylinkedwiththeconsumerrunsinmorecomplicatedFPSresultsisveryhigh.Transientfaultsignalfallsintotwoenvironment,thereforeFPSindistributionnetworkfacesmorecategories,currentandvoltagetransientfaultsignal.Smallchallenges.Now,alotofresearchhavebeendoneonFPS,currentgroundingsystemisbasicallyadoptedinthethesemethodsareprimarilybasedonsequencecomponentdistributionnetworkofvariouscountries.Whenphase-to-earthfaultoccurs,thefaultcurrentistoosmalltodetect.However,aftersmallcurrentgroundingsystemfaultoccurs,steady-stateManuscriptreceivedJuly14,2018.Thisworkwassupportedinpartbythelinevoltageisconstant[18],andtransientvoltagetravelingScienceandTechnologySupportingProjectofSichuanProvinceunderGrantwaveappearsinfaultphaseprominentlyandreflectsfault2014GZ0083and20140010.Xiao-yanHaniswithStategridSichuanElectricPowerCompany,Chengdu,characteristics.ThispaperpresentsaFPSmethodutilizingSichuanProvince,China(e-mail:hanxiaoyan1965@126.com).transientvoltagetravelingwave,whichisintendedtobeusedQinReniswithStategridDazhouSupplyCompany,Dazhou,Sichuanbysmallcurrentgroundingsystem.ThemaincriterionofFPSProvince,China(e-mail:screnqin@163.com).QinShuiswiththeDepartmentofCommunicationEngineering,Sichuanisbasedoncorrelationcoefficient.CalculatethecorrelationUniversity,Chengdu,China(e-mail:shuchin@163.com).CICED2018PaperNo.201804270000870Page1/7765
12018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018coefficientsoftransientvoltagetravelingwavesineachtwoapproaching1referstoahigherdegreeofcorrelation,andphasesandcomparerelationshipofthesecorrelationapproaching0referstoalowerdegreeofcorrelation.ρxy=0ifcoefficientstoconfirmthefaulttype.Accordingtothetwosignalsareuncorrelated.correlationcoefficientsthemethodcanabsolutelydistinguishthefaultphaseoftwo-phaseshortcircuitfaultandsymmetricalthree-phasefault.Fordoublephase-groundedfaultandIII.THEREGULATIONOFFAULTTRAVELINGWAVEsingle-phaseearthfault,theenergyrelationshipoftransientWhenpowerlinesfault,duetothevoltagesaltationatfaultvoltagetravelingwaveisaddedasauxiliarycriteriontoidentifypoint,transientvoltagetravelingwaveprocessappearsonlines.thetwotypestoselectthefaultphaseunderdifferentfaultAccordingtothesuperpositionprinciple,thepowernetworktypes.canberegardedasthesuperpositionofnormalrunningpowerThestructureoftheremainderpaperisorganizedasfollows.networkandadditionalfaultpowernetwork,likeFig.1,whereSectionIIdescribesthefundamentalsofthecorrelationthevoltageofthenormalrunningpowernetworkisthepoweranalysis.SectionIIIdiscussestheregulationoffaulttravelingfrequencyvoltageandthetransientvoltageintheadditionalwave.ThefaultcharacteristicsareanalyzedandthecriterionfaultpowernetworkistheresultoffaultelectromotiveforceforselectingfaultphasearederivedinsectionIV.SectionVactingaloneatfaultpoint.illustratestheFPSprocedure.InsectionVI,theFPSmethodisperformedbasedonPSCADsoftware.ConclusionsaredrownMNinsectionVII.UfII.FUNDAMENTALS-UfCorrelationanalysisthatdiscussesthedegreeofcorrelationFig.1.DiagramofFaultnetworkbetweenthesignalsisanimportantsignalanalysistechnology.Thecorrelationcoefficientisanumericalexpressionaboutthedegreeofcorrelation.ThecorrelationcoefficienthasDistributionlinesareneededtoregardasdistributednormalizedthecorrelationoperationtogetnormalizationparametermodel.Thereareinductanceandresistancealongthecoefficients,whichcanmeasurecorrelationdegreetransmissionlinedistributedevenly,andcapacitanceandconveniently.Thecorrelationcoefficientofone-dimensionalconductancedistributedbetweenwireandwire,andbetweensignalx(n)andy(n)isdefinedas:thewireandtheground.PowerlinecanbeseenalinkageofanumberofresistanceR,inductanceL,conductanceGandxnyncapacitanceCtogether.Fig.2isanequivalentschematicofanxy(1)cantletline.xy1122+RdxLdxI(x)22Wherexxnandyyn.nnU(x)GdxCdxAccordingtoParseval'stheorem,thefrequency-domainexpressionof(1)canbeyielded:-XejjY*edxdxxy11(2)2222Fig.2.DiagramofcantletlinejjXedYedWhereX(ejw)andY(ejw)areseparatelydiscreteFourierseriesThefollowingisconstraintrelationshipbetweenvoltageandofsignalx(n)andy(n).Equation(1)and(2)expresscorrelationcurrenttravelingwaveonpowerline:coefficientfromtimedomainandfrequencydomainìU+(x,w)=Z(w)I+(x,w)ïcrespectively,bothofthemareequivalent.FromSchwarzí(3)--inequality,thecorrelationcoefficientabsolutevalue|ρxy|≤1.TheU(x,w)=-Z(w)I(x,w)îïcpositivesignofthecorrelationcoefficientrepresentsthesame++whereZc(ω)iswaveimpedance,UandIarethevoltagedirection,negativesignrepresentstheoppositedirection.Thetravelingwaveandcurrenttravelingwavewhichspreadalongabsolutevalueofthecorrelationcoefficientofthetwosignals--thexforwardrespectively,UandIarethevoltagetravelingCICED2018PaperNo.201804270000870Page2/7766
22018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018waveandcurrenttravelingwavewhichspreadalongnegativexUfZcIf(7)directionrespectively.Here,thepositivexdirectionistheThevoltagerelationshipofonefaultphasewithanotherfaultpowerdistributionbustothelines.phaseandafaultphasewithnon-faultphasecanbederivedby(7).ThroughinverseFouriertransform,thefrequency-domainvoltageuf(ω)canbeconvertedintotime-domainvoltageuf(t).IV.THEANALYSISOFFAULTCHARACTERS1)Single-phaseearthfaultThemutualcouplingactsbetweenthree-phasecircuits.WhenphaseAfaultoccurs(thefaulttypeisdenotedasAG),Whenthecircuitsrunnormally,thevastmajorityofthephaseAisconnectedwithearthtoconstituteacircuitloop,frequencycomponentsconcentrateinpowerfrequency,andthewhiletransienttravelingwaveisgeneratedinphaseA.Infaultcouplingcanbeneglected.Butinfaultcircuits,thefrequencyadditionalnetwork,faultcurrentsofphasesBandCarebothoftransientvoltagetravelingwaverangesfromDCtohundredszeroatthefaultpointF,namelyifb=ifc=0,whichispluggedofkilohertz,thecoupledcomponentcannotbeignored.Everyinto(7)candeducethefollowingformula:frequencycomponentoftransientvoltagetravelingwaveinfaultphasemakesnon-faultphasegeneratecorrespondingufaZsifafrequencycoupledwave,therebyformingafaultcharacteristicufbZmifa(8)waveofnon-faultphase.CouplingcoefficientisafunctionofufcZmifafrequency,andthecouplingdegreesofdifferentfrequencyFrom(8),componentsarediscrepant,sothetransientvoltagetravelingwaveinnon-faultphaseisnotperfectlycorrelatedwiththatinuuZmufbfcfa(9)thefaultphase.ZsBasedontheanalysisofthecorrelationbetweenfaultSothecouplingcoefficientofphasesAandBandthetransientvoltagetravelingwavesofthreephasesundercoefficientofphasesAandCare(10):differentfaulttypes,thecorecriterionoffaultphaseMabMacZmZs(10)identificationmethodisestablishedbycalculatingthecorrelationcoefficientoftransientvoltagetravelingwave.UseFromwhathasbeendiscussedabove,forphaseAfault,thetheabsolutevalueofthecorrelationcoefficienttomeasurethecouplingvoltagetravellingwaveofphaseBisthesameasthatdegreeofcorrelationanddefinethecorrelationcoefficientofphaseC,sothevoltagetravellingwavesofphasesBandCvectorofthree-phasesfaulttransientvoltagetravelingwavesasarecompletelycorrelated.Thecouplingcoefficientoffaultρabc=[|ρbc|,|ρac|,|ρab|].Thecorrelationcoefficientsofperfectphasewithnon-faultphaseisnotafixedvalue,butafunctionofcorrelation,notperfectcorrelationanduncorrelationarefrequency.Therefore,calculatedby(2),thecorrelationrespectivelyexpressed1,λand0.Adetailedanalysisisascoefficientoftransientvoltagetravelingwavesoffaultphasefollows.andnon-faultphaseisalsoafunctionoffrequency.InthesameZc(ω)isusedtorepresenttheimpedancematrix,whichisvein,thefaulttypesofBGandCGcanbeanalyzed.definedasBasedontheaboveanalysis,thecorrelationcoefficientZZZvectorsofthreesingle-phasefaulttypesarerespectively:smmAG:1(11)ZZZZ(4)abccmsmZZZBG:abc1(12)mmsCG:1(13)whereZs(ω)istheself-impedanceandZm(ω)isthemutualabcimpedance.Whatisnoteworthyisthattheself-impedanceis2)Two-phaseshortcircuitfaultlargerthanthemutualimpedance.InthefrequencydomainWhentwo-phaseshortcircuitfaultoccursinphasesBandCtransientvoltageUf(ω)andcurrentIf(ω)arerespectively(thefaulttypeisdenotedasBC),thefaulttravelingwavesexpressedassignificantlyexistinthetransmissioncircuitconsistingoftwoTfaultphases.Infaultadditionalnetwork,faultcurrentsofUfufaufbufc(5)phasesBandCareequalinmagnitudeandoppositeindirectionTandthefaultcurrentofphaseAiszeroatthefaultpointF,Ififaifbifc(6)namelyifb=-ifcandifa=0,whichispluggedinto(7)candeduceAccordingtotheconstraintrelationshipbetweenvoltagethefollowingformula:travelingwaveandcurrenttravelingwave,Uf(ω)andIf(ω)meetthefollowingformula:CICED2018PaperNo.201804270000870Page3/7767
32018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018u0phaseisnotentirelycorrelatedwiththatinnon-faultphase.ThefafaulttypesofACGandABGcanbeanalyzedjustasBCG.ufbZsifbZmifc(14)Accordingtotheaboveanalysis,thecorrelationcoefficientufcZmifbZsifcvectorsofthreedoublephase-groundedfaulttypesare:Fortwo-phaseshortcircuitfault,thevoltagetravelingwavesBCG:abc1(21)oftwofaultphaseshavethesameamplitudeandfrequencyandoppositedirections,andthecoupledcomponentsofnon-faultACG:abc1(22)phasejustcanceleachotherout,whichmakesnon-faultphaseABG:abc1(23)notransientvoltagetravelingwave.Consequently,transient4)Symmetricalthree-phasefaultvoltagetravelingwavesintwofaultphasesareperfectlyWhenSymmetricalthree-phasefaultoccurs(thefaulttypeiscorrelated,whilethecorrelationcoefficientoffaultphasewithdenotedasABC),phasesA,BandCarerespectivelyconnectedanon-faultphaseiszero.Inthesameway,thefaulttypesofACwithearthformingcircuitloops.Thelineparameters,faultandABcanbeanalyzed.locationandsystemimpedanceofthreephasesareidenticalandConsequentlythecorrelationcoefficientvectorsofthreethereforetransientvoltagetravelingwavesofthreephaseshavetwo-phaseshortcircuitfaulttypesarerespectively:thesamefrequencycomponents.Amplitudeofthree-phaseBC:abc100(15)transientvoltagetravelingwaveisproportionaltotheamplitudeoftheinitialfaultvoltageofcorrespondingphase.AC:abc010(16)ThustransientvoltagetravelingwavesofphasesA,BandCareAB:abc001(17)perfectlycorrelated.3)Doublephase-groundedfaultThecorrelationcoefficientvectorofsymmetricalWhendoublephase-groundedfaultoccursinphasesBandCthree-phasefaultis:(thefaulttypeisdenotedasBCG),phasesBandCareABC:abc111(24)connectedwithearthformingcircuitloops,whiletransientAccordingly,(11)~(13)and(21)~(23)indicatesthatthetravelingwavesaregenerateintwofaultphases.InfaultcorrelationcoefficientvectorsofCG,AGandBGaretheadditionalnetwork,thefaultcurrentofphaseAiszeroattheequivalentofABG,BCGandACGseparately.ThecorrelationfaultpointF,namelyifa=0,whichispluggedinto(7)cancoefficientvectordoesnotmakedoublephase-groundedfaultdeducethefollowingformula:whollydistinguishedfromsingle-phasefaultsothatauxiliaryuZmifbifccriterionisneededtoidentifythetwofaulttypes.Becausethefaself-impedanceislargerthanthemutualimpedance,(10)andufbZsifbZmifc(18)(20)based,thetransientvoltagetravelingwaveinfaultphaseisufcZmifbZsifcstrongerthanthenon-faultphasecoupledwaveintheenergy.Therefore,therelationshipofenergiesoftransientvoltageFrom(18),travelingwavesinnon-faultphaseandfaultphaseisaddedasZmtheauxiliarycriteriontotellapartCGfromABG,AGfromufaufbufc(19)ZZsmBCGandBGfromACG.LetEa,EbandEcrepresentA,BandSothecouplingcoefficientofphaseAwiththesumofCthree-phaseenergyoftransientvoltagetravelingwave.TakephasesBandCis(20):theAGandBCGforexample,yieldingthatforAG(Ea>Eb)&&(Ea>Ec)andforBCG(Ea 42018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018influenceonthecorrelationcoefficientvectorandtheenergyVoltagedataacquisitionrelationshipasthecriterionsoffaultphaseidentification.Theaboveanalysisisbasedonthefrequency-domaintransientTofilterpowerfrequencyvoltagetravelingwaves.ConsideringthatthecorrelationcoefficientinfrequencydomainistheequivalentofthatintimeTocalculatethecorrelationcoefficientandquantitatedomain,tosimplifythecalculationprocessthispaperusesthetime-domaintransientvoltagetravelingwavestocalculateYYcorrelationcoefficient.ρabc=[1,λ,λ](Ea>Ec)&&(Ea>Eb)AGNNBCGYYρabc=[λ,1,λ](Eb>Ea)&&(Eb>Ec)BGNV.THEPROCEDUREOFFPSNACGYYConclusionsasaresult,accordingtothecorrelationρabc=[λ,λ,1](Ec>Ea)&&(Ec>Eb)CGNcoefficientofthethree-phasetransientvoltagetravelingwaves,ABGNYaswellastherelationshipofenergyinnon-faultphaseandfaultρabc=[1,1,1]ABCphase,thecriteriaofFPSareformed,andanewFPSmethodisNYpresentedinthispaper.TheFPSprocedureisshowninFig.3.ρabc=[1,0,0]BCNFirstly,collectvoltagedata.Secondly,filterpowerfrequencytoYρabc=[0,1,0]ACobtainthree-phasethetransientvoltagewave.EventhoughNtherearesomanywaystofilterpowerfrequency,itistheρ=[0,0,1]YABabcFourierfilterthatthispaperadopts(it’snotthefocusofthisarticleandwon’tbeelaborated).Then,calculatethecorrelationFig.3.Flowchartoffaultphaseidentificationcoefficientofthree-phasetransientvoltagewavewithinashorttimewindowafterthefaultandquantitatethecorrelationcoefficient.Takingthei.e.causedbytheactualcircuitandVI.SIMULATIONANDANALYSISSsignalprocessingintoaccount,iftheabsolutevalueoftheThePSCADsoftwareisusedtosimulatethetransientsignalscorrelationcoefficientisgreaterthan0.95,lessthan0.1andtheinthepowersystem,andthefrequencydependentmodelsareremainder,respectivelyquantizethecorrelationcoefficientasusedtomodeltheactuallines.Thiskindoflinemodelcan1,0andλ.Then,selectfaultphasebasedonthecorrelationreflectthecharacteristicofchangeofthelineparametersalongcoefficientvector.Fordoublephase-groundedfaultandwiththefrequencychange,sothatitcanshowthepropagationsingle-phasefault,itisneededtocalculatetheenergiesofofthetravelingwaveincludingdifferentfrequenciesinthetransientvoltagetravelingwaveofphasesA,BandCtolinesveritably.HerePSCADsoftwareisusedtobuildthe10kvdeterminewhattypeoffault.frequency-dependentdistributionnetworkmodelsshowninFig.4.ThelineparameterswereZpos=0.35606+j0.91885Ω/km,Zneg=0.35606+j0.91885Ω/kmandZzero=0.79466+j4.77478Ω/km.DataacquisitiondevicethatwasfixedinpowerdistributionbusandnotedpointM,collectedwavevoltagesignalin100magnifiedbyPT,wherethesamplingfrequencywas10MHz.ToverifytheavailabilityoftheaboveFPSscheme,thefaulttype,faultlocationandfaultresistancearechangedrespectivelytosimulate.Thesimulationresultsofdifferentfaulttypeunderthesametransitionresistance(0ohm)andfaultlocationatpointF2(7kmawayfrompointM)havebeenshowninTable.I.ItcanbeseenthattherelationshipofthecorrelationcoefficientandtheenergylawconformtothecharacteristicsanalysisofthedifferentfaulttypesinsectionIV.CICED2018PaperNo.201804270000870Page5/7769 52018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018simulation.Table.IIIincludesthecorrelationcoefficient5kmF3vectorsandtheFPSresultsofphaseAfaultindifferent3km6km4km7km3km3kmtransitionresistanceunderthesamefaulttypefaultandlocationMNF1F2F4F5atpointF2.Itisexpressedthatthesizeofthetransition3km5kmresistancehasnoeffectontheFPSresults.Fig.4.TopologyofdistributionnetworkTABLEIIIFPSRESULTSINDIFFERENTTRANSITIONRESISTANCETABLEIFaultTransitionTheCorrelationEaEbEcFPSFPSRESULTSINDIFFERENTFAULTTYPESTypeResistanceCoefficientVectors(10(10(10ResultsFaultEaEbEcFPS(Ω)-4)-4)-4)TheCorrelationTypes(10(10(10Results0[1.000,0.448,0.448]2933AGCoefficientVectors-3)-3)-3)300[1.000,0.423,0.423]1.770.300.30AGAG[1.000,0.446,0.448]2.90.30.3AG1k[1.000,0.545,0.545]0.390.070.07AGBG[0.448,1.000,0.448]0.32.90.3BGAGCG[0.449,0.447,1.000]0.30.32.9CG5k[1.000,0.642,0.642]0.030.010.01AGBCG[0.997,0.509,0.516]0.140.280.53BCG10k[1.000,0.681,0.681]0.000.000.00AGACG[0.460,0.978,0.445]0.610.140.27ACG271111ABG[0.506,0.493,0.985]0.350.540.14ABGBesidesthecaseslistedinthetables,alotmoresimulationBC[1.000,0.042,0.042]---BCexamplesaretaken.ThesimulationresultsareconsistentwithAC[0.006,1.000,0.006]---ACthetheoreticalanalysis.ThismethodhaveagoodapplicationAB[0.064,0.063,1.000]---ABprospect.Ofcourse,therearealsosomeissuestoresearch.Forinstance,comparedwiththesimulationsystem,intheactualABC[0.997,0.999,0.999]---ABCengineeringiftheproposedapproachisornotaffectedbyswitchingandlightningneedsmoreresearcherfurthergointo.Table.IIindicatestheFPSresultsofBCphaseshortcircuitindifferentbranchesanddifferentdistancewhentransitionVII.CONCLUSIONSresistanceis0ohm,wherethefaultpointsF1,F2,F3,F4andF5inFig.4wererespectively2km,7km,13km,13kmand22kmThispaperhasproposedamethodbasedonthecorrelationawayfromthepowerdistributionbus.ItwasimpliedthatfaultcoefficientandrelationshipofenergytosolveFPSindistanceorfaultbranchesdonotaffecttheFPSresults.distributionnetworks.Thecorecriterionoffaultphaseidentificationmethodisthecorrelationcoefficientvectorofthree-phasetransientvoltagetravelingwave,butfordoubleTABLEIIphase-groundedfaultandsingle-phaseearthfault,theenergyFPSRESULTSINDIFFERENTLOCATIONFaultFaultPointTheCorrelationCoefficientFPSResultsrelationshipofthreephasesisappliedasauxiliarycriteriontoTypeVectorsidentifyfaulttype.Eventually,FPScancometrueunderdifferentfaulttypes.F1[1.000,0.067,0.067]BCThealgorithmofthemethodisconcise,andtherequireddatawindowlengthisshort,justoneoverfortyofthepowerF2[1.000,0.042,0.042]BCfrequencycycleinthepaper.Basedonthese,theFPStechniqueBCF3[1.000,0.023,0.023]BCispracticalandspeed.UsingPSCADsoftwaretobuildmodelofpowercircuit,simulationresultsshowthatthepresentedF4[1.000,0.003,0.001]BCmethodcansuccessfullyselectfaultphaseregardlessoffaultF5[1.000,0.056,0.062]BCdistance,branches,andthefaulttransitionresistance,andtheresultsareaccurateandreliable.Becausefaulttransitionresistanceindistributionnetworkrangesfrom0toseveralthousandohms,thetransitionresistanceisset0,300,1k,5kand10kohmsseparatelyintheCICED2018PaperNo.201804270000870Page6/7770 62018ChinaInternationalConferenceonElectricityDistributionTianjin,17-19Sep.2018REFERENCESXiao-yanHan,SeniorEngineer,Hismainresearchfocusonsmartgridtechnology,ultrahighvoltagetransmissionandtransformation,powersystem[1]K.Liuetal.,“Phaseselectionelementbasedonphaserelationshipmanagementandresearch.betweensequencecomponentsoffaultybranchcurrent,”ElectricPowerAutomationEquipment,vol.33,no.3,pp.77-83,2013.[2]H.Boetal.,“AnewsequencefaultphaseselectorcomponentforQinRenreceivedtheB.S.degreeinmachineryandelectronicsengineeringtransmissionlineprotection,”AutomationofElectricPowerSystems,fromtheNorthUniversityofChina,Taiyuan,China,in2013.Sheispursuingvol.31,no.12pp.64-67,2007.theM.S.degreeinsignalandinformationprocessingatSichuanUniversity,[3]WeiLietal.,“StudyonsequencecomponentbasedfaultphaseChengdu,China.selectorduringpowerswings,”IEEEInternationalConferenceonHerareasofinterestarefaultdetectionofdistributionnetworkandmodernCriticalInfrastructure(CRIS),2010,1-5.signalprocessing.[4]T.Zhengetal.,“Anewphaseselectorbasedonfaultsequencecomponentsandfuzzylogictheory,”AutomationofElectricPowerSystems,vol.27,no.12pp.41-45,2003.QinShureceivedtheB.S.degreeinelectricalengineeringfromChongqing[5]X.N.Linetal.,“CurrentstatusandDevelopmentoffaultlocationUniversity,Chongqing,China,in1982,M.S.degreeinelectricalengineeringtechniquefordistributionnetwork,”ProceedingsoftheCSEE,vol.22,fromSichuanUniversity,Chengdu,China,in1986,andPH.D.degreeinradiono.5,pp.16-21,2002.engineeringfromUniversityofElectronicScienceandTechnologyofChina[6]X.Q.Fanetal.,“StudyonfaultphaseselectionbasedonFFTand(UESTC),Chengdu,China,in1990.phase-separationcurrentphasedifferenceofhigh-voltageHeiscurrentlyaprofessorininstitutionofelectricalinformation,Sichuantransmissionlines,”IEEEInternationalConferenceonMechatronicsUniversity,Chengdu,China.HisresearchinterestincludesfaultdetectionofandAutomation(ICMA),2010,762-767.powersystem,smartgridsandmodernsignalprocessing.[7]T.Huetal.,“Discussionofthree-phaseshort-circuitcriterionofphaseselectionrelaybasedondeltavariableelementofphasecurrentdifferential,”ElectricPowerAutomationEquipment,vol.26,no.10pp.107-109,2006.[8]H.F.Zhaoetal.,“Discussionofphaseselectionrelaybasedondifferenceofphasecurrents,”Relay,vol.33,no.13,pp.6-9,2005.[9]J.Maetal.,“Anewfaultphaseidentificationmethodbasedonphasecurrentdifference,”ProceedingsoftheCSEE,vol.32,no.19,pp.117-125,2012.[10]G.M.Qianetal.,“Animprovedfaultphaseselectorfortransmissionlineprotectiverelay,”ElectricPowerAutomationEquipment,vol.19,no.4,pp.28-30,1999.[11]W.J.Luetal.,“Anoveladaptivephaseselectorbasedonfaultcomponent,”ProceedingsoftheCSEE,vol.27,no.28,pp.53-58,2007.[12]S.Chenetal.,“FaultphaseselectionforUHVtransmissionlinesbasedonnaturalfrequenciesoftravelingwaves,”PowerSystemTechnology,vol.35no.6,pp.15-21,2011.[13]S.Linetal.,“Faultdetectionandfaultyphasedeterminationoftransmissionlinesbasedontime-frequencycharacteristicsoftransienttravellingwaves,”PowerSystemTechnology,vol.36,no.7,pp.48-53,2012.[14]A.K.Pradhan,“Intelligenttechniquesfortransmissionlinefaultclassification,”ComputationalIntelligenceinPowerEngineering,vol.302,pp.75-101,2010.[15]J.D.Duanetal.,“Transient-basedfaultyPhaseselectioninEHVtransmissionlines,”ProceedingsoftheCSEE,vol.26,no.3,pp.1-6,2006.[16]Z.J.Kangetal.,“AnewmethodforfaulttypeidentificationbasedonHHTandNeuralNetworkindistributionnetwork,”InformaticsandManagementScience,vol.207,no.4,pp.187-194,2013.[17]G.Xuetal.,“Afault-phaseselectionmethodbasedonnaturalfrequencyoftravelingwaveandatomicenergyentropy,”PowerSystemTechnology,vol.38,no.6,pp.1688-1693,2014.[18]T.Ji.“Thefaultlocationbasedontransienttravellingwaves,”Jinan,ShandongUniversity,2006.CICED2018PaperNo.201804270000870Page7/7771
此文档下载收益归作者所有