《2012年美赛论文B题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
东方文化培训中心经营方案CampingalongtheBigLongRiverAbstractInthispaper,wetrytosolvetheproblemofschedulingrivertourismwhichcontainsdifferenttourdurationsandvariousspeedsofpropulsion.Weproposeaplantoutilizethecampingsitesasmuchaspossible,andguaranteethattwodifferentteamsdonotmeetduringalltheirtrips,inordertoprovidetouristswiththewildnessexperience.Inmodelconstruction,underaseriesofnecessaryassumptionsincludingtripdurationandcampsitestates,wemakethediscretedynamicprogrammingontheBigLongRiveroperationusingtheconstraintsandobjectivefunctions.Moreover,amatrixformisintroducedtodescribethestatesofcampsitessuccinctlyandcomprehensibly.Weimproveparticleswarmoptimization(PSO)toInteger-PSOalgorithmwhichcansolvethelarge-scaleintegeroptimizationproblems.Thentheoptimumsolutionisobtainedunderourassumptions.Throughcarefulcalculation,wehaveprovedthatthisoptimumsolutionsatisfiesthebasicrequirementofthetopic.Whenthereare20campsites,wefigureoutthattheoptimalsolutionis43trips.Withthefurtherdiscussionaboutthedifferentdemandsoftouristsandmanagers,weimprovethecurrentmodelandtakemorefactorsintoaccountsuchasutilizationpercentageanddifferentcampsitequantity.Wemakethescheduleofteamsandfindthelawofscheduletopologystructurewhichhelpsuscertifyourmodelandsuggestabettertheory.Wetesttherobustnessandsensitivityofthemodelsbyaccuratesimulationaboveandobtainsometheoreticalconclusionsofthearrangementforrivertourism.Theobtainedoptimalsolutionperformspromisinglywhenconsideringdifferentconditions.Therefore,the页脚内容25
1东方文化培训中心经营方案theoreticalguaranteeandthesimulationresultareconsistentwitheachother,andtogetherindicatethefeasibilityandreliabilityofoursolutiontosomeextent.Keywords:PSO,discretedynamicprogramming,topology,campsite页脚内容25
2东方文化培训中心经营方案CONTENT1PROBLEMSTATEMENT22PROBLEMANALYSIS22.1BackgroundandApproaches22.2OurOwnUnderstanding22.3OutlineofOurAnalysis33ASSUMPTIONSANDNOTATIONS43.1Assumptions43.2Notationsandsymbols54MODELINGANDSOLUTIONS64.1Modeling64.1.1Simplifyingconditions64.1.1.1PreliminarySimplification64.1.1.2MatrixExpression64.1.2Establishmodeling74.1.2.1UnderstandingofInfluencingFactors74.1.2.2ConstraintConditionsandObjectiveFunctions84.2Solutions124.2.1IntroductionofPSOAlgorithm124.2.2TheProcedureofRevisedPSO144.2.3OptimalSchedule164.2.4TheRelationbetweentheOperationScheduleandY18页脚内容25
3东方文化培训中心经营方案5CONCLUSIONS205.1Strengths205.2Weaknesses205.3Improvements206REFERENCES21页脚内容25
4东方文化培训中心经营方案1ProblemStatementIn this paper, we try to solve the problem of scheduling river tourism to utilize the campsites in the best way possible. Visitors to the Big Long River (225 miles) can enjoy scenic views and exciting white water rapids. The only way to enjoy it is to take a river trip that requires several days of camping. Passengers take either oar-powered rubber rafts, which travel on average 4 mph or motorized boats, which travel on average 8 mph. The trips range from 6 to 18 nights of camping on the river. The manager of this river wants every trip to enjoy a wilderness experience, with minimal contact with other groups of boats on the river. Currently, X trips travel on the Big Long River during a six month period every year. There are Y camp sites on the Big Long River, distributed fairly uniformly throughout the river campsites and no two sets of campers can occupy the same site at the same time. Problem: How many more boat trips could be added to the Big Long River’s river season in order to utilize the campsites in the best way possible?2ProblemAnalysis2.1BackgroundandApproachesThisproblemhasaclosecontactwithpeople’slifeandproduction.Thebackgroundofthisproblemishowtoplanthetravellingroutesforthemanagersoftherivertomakehigherprofits,andtheansweroftheproblemcanbeappliedtothefieldofcityplanning,publictransportationandproductionlogistics.However,lowandoverexploitationoftravelresourcesarecommondrawbacksinthefieldofrivertourism,partlybecauseofthelackoftheoreticalfoundationsinscientificcalculation.Therefore,thediscussionandsolutionofthisproblemisofgreatimportanceforsociety.页脚内容25
5东方文化培训中心经营方案1.1OurOwnUnderstandingSimilartotheoperationoftrains,thetouristschoosetheirspecifictravelplanfrommanypredeterminedschedulesmadebymanagersoftheriver.Thatistosay,managerscouldpickupthespecifictouristsaccordingtotheirchoicesofdifferenttypesofboatsandduration.Thereforewecannotadoptqueuingmodeltosolvetheproblem.Ourgoalistohelpthemanagerstoobtainthehighestprofits,inotherwords,thehighestnumberofthetrips.Atthesametime,wearerequiredtorespectthetouriststogivethemthemaximumwildexperience,whichmeanswetrytoavoidthesituationthattwoormoreteamsmeetwitheachotherinthetour.Wetakethesetwofactorsasobjectivefunctions,andtrytogetconstraintconditionsfromtherealpracticalsituationofthisproblem.Inthisway,weuseoptimizationmethodtogettheoptimalsolutionofthisproblem.Howeverforreasonsofconvenience,ifwedonotmakesomenecessarylimitsandassumptionsoftheproblem,wewillhaveafairlytoughjobondataprocessinganditisnoteasyforustogettheavailableresults.Therefore,inoursolutionpart,wehavetomakereasonableconstraintsandlimitssoastogetthecompleteandfeasibleexpressioninmathematics.Forexample,wepresumethatthereisnotranscendencebetweenboats,showingthattwodifferentteamscouldnotmeetduringtheirtrips.Also,forthesakeofsimplicityofmathematics,wesupposethattheboatsarealwaysattheconstantspeedoncestarting[1].Thetwotypesofboatscanberepresentedbytwoparametersinmathematics,andatacertainnighttherearetwostatesforeverycampsite:withorwithoutteamstaying.Inmathematics,wecanrepresentthemwith1and0.Accordingtotherequirementoftheproblem,everycampsitehasatmostonetravelingteamtooccupy,sowejusttrytoassurethevalueofcampsitestateisnomorethan1withinonenight.Andtosatisfytherequirementofnoencounterbetweenteams,weneedtoguaranteethatthecourseoftheboatinfrontisalwayslargerthantheboatbehind.1.2OutlineofOurAnalysisSynthesizingtheinformationthatwehave,wegettoknowthatthewayfortouriststoselectthedurationandthetypeoftheboatsneedstobeconsideredbymanagerswhentheyaremakingplan.Alsothemanagerneedstoensurethatthelocationoftheboatinfrontcanmakeaneffectontheboatbehind.Tofullymakeuseofthecampsitesinordertoaccommodatemoretourists,thetravelagencyneedstoworkouta页脚内容25
6东方文化培训中心经营方案well-calculatedplanaboutthenumberoftoursthathavedifferentdurationandtheircorrespondingtripstartdates.Wealsonoticethatitisnotlikelythateverycampsitehasateamtooccupyeveryday[2].Bymeansofthisseriesofprocessing,weestablishandoptimizeourmathematicalmodel.AndfinallywegettheoptimalresultofX.Inaddition,aimingatthedistinctgoalsofthetouristsandmanager,wecanmakefurtheroptimizationbyconstructinganotherdestinationfunction.1AssumptionsandNotations1.1Assumptions●Assumingthatthesixmonthsmentionedintheproblemequalstocontinuous180days.●Oneorafewteamscanstarttheirtripsinadayandtheymuststarttogether.●Everyteamtravelsthesamemilesperday.Butdifferentteamcantraveldifferentmilesinaday.●Everyteamstrictlyconformstothepredeterminedplanmadebythemanager.●Theintervalofeverytwoneighboringcampsitesremainsstrictlyuniform.●Weconsiderbothoar-poweredrubberraftsandmotorizedboatssailsonaconstantspeed,includingtheacceleratingpartatthebeginningandthedeceleratingwhenfinishes.●Theflowspeedoftherivermaintainssteady,andtheweathersituationdoesnotaffectthespeedoftheboats.●Everyboatcanonlystayonenightatthesamecampsite.●Theboatsbehindcouldnevertranscendtheboatsinfront.●Everyteamcanonlychooseonekindofboat,whichmeansthetravelingspeedoftheboatofeveryteamdoesnotchangeduringthecourse.●Theteamcannotreturntothecampsitesbehind;theycouldonlymoveforwardalongthetourroute.页脚内容25
7东方文化培训中心经营方案1.1NotationsandsymbolsTab.1NotationsandsymbolsNotationMeaningthecampdurationofonetripwhosetripnumberisthespeedofoneraftorboatwhosenumberisthesequencenumberofcampsitewhereNo.tripstaysatmomenttravellingtimeofNo.everydaytravellingmilesofNo.everydaythetotalofcampsiteswhichTeamNo.passesbybutdoesnotstaythedatethatTeamNo.startsutilizationpercentageofthecampsiteNo.页脚内容25
8东方文化培训中心经营方案thetotalnumberofcampsitesthemaximaltotalnumberoftripstheaveragenumberofboatsstartedperdaythefrequencyofNo.campsiteoccupiedwithin6months号营地的频率占用6个月内 1ModelingandSolutions1.1Modeling1.1.1Simplifyingconditions1.1.1.1PreliminarySimplificationDuringthewholejourney,everyteamcouldstayatonlyonecampsitepernightandcouldnotbetranscendedbyotherteams.Throughsimplecalculations,weknowthatanyboatwillfinishtheirtraveliftheysailtenhoursadaywithinsixdays.Obviously,theteamsarenotallattheirfullspeedmovingforwardinthetravelprocess.Afterfurtheranalysis,wedecidetodefinetheindexoftheprogressofthetravelintermsofthelocationofthecampsites.Thatistosay,oneboatcannottranscendanotherboatwhichisclosertothetermination.Accordingtotheproblem,18days-longtourisallowed,apparentlythenumberofthecampsitesYisnolessthan18.Ifnot,theriverwillnotbeabletosupplysufficientcampsitestoaccommodate[3].Andsincenotalltheallthetypesofthetouris18dayslong,thereexistthecampsitethathasnoteamstaying.Inaddition,wearesupposedtomakeuseofcampsitesasmuchaspossible.Thuswecanseethisconditionastheconstraintsoftheoptimizingproblem.1.1.1.2MatrixExpressionBasedontheseconsiderationsabove,weutilizethematrixtodenote页脚内容25
9东方文化培训中心经营方案thestateofthespecificcampsiteatthespecificnight.Thereareonlytwoelementsinthematrix:0and1.0representsthattheboatdoesnotstayatthiscampsiteatthenight;1indicatesthattheboatstaysatthecampsitethisnight.Inthisway,atthecertaintime,alltheboatsintheirtripscanberepresentedbythematrixwithXrowsandYcolumns.Andthedurationtimeofthetripcanbeindicatedbythenumberofchangeofthematrixfromthebeginningtotheendoftheirtrips.Forexample,onecertaincampsiteatthecertainnightcouldbepresentedbythefollowingtable:Tab.2ExampleofStateofCampsite000…010000…000…………………010…000001…000100…000Themostoriginalmatrixisthezero-matrix,denotingnoteamstartstheirtravel.Aftertheoriginalquietstate,everyrowofthematrixbeginstohaveelement1andcontinuouslymovingtowardstherightrow.untiltheelementsoftherowbecomeall-zero,whichmeanstheboathasfinishthetravelandarriveatthetermination.Addingallthematrixes,wegetthesumoftherowelementsofthematrixandthevalueisbetween6and18.Inthiswaywegetallthecampsitesandboatsstatesduringallthetravelperiod.Meanwhile,the6-month-longdurationcallsforverylargeamountofcomputation,andbringsdifficultyinfeasibilitytoapplythismethod.Forthesakeofsimplifyingtheproblem,wemightdividethe180daysinto10periods,with18daysperperiod.Inthelaterdiscussion,wecouldexertourmodelinarelativelysmallperiod,soastoreducetheverboseamountofcomputationandmakeoursolutionsavailable.页脚内容25
10东方文化培训中心经营方案1.1.1Establishmodeling1.1.1.1UnderstandingofInfluencingFactorsFromthemanager’spointofviewofmakingprofits,thepossiblelargestnumberoftripteamsispreferred.Wearerequiredtohelpmanagertogivetheoptimalrivertripsutilizationplan.Accordingtothedescriptionoftheproblem,therearealotofconstraintstolimitthemotivationofteams.Whatweshoulddoistoexertthemaximumutilizationpercentageofthecampsitesinthefinitetime.Thetravelplanoftheboatsbehindispartlyaffectedbytheteaminfront.Forexample,theTeam2shouldavoidmeetandstayatthesamecampsiteatthesametimeastheTeam1.Similarly,fortheTeam3,4andmore,theirrunningstates,involvingtherunningspeedandtravelingtime,arepartlyinfluencedbytheboatsinfront[4].Fromthis,werealizewecouldusethetimeseriesmodeltosolvetheproblem.Theplanoftheboatsinfrontisrelevanttotheonesbehind,andtheinfluencecouldbeaccumulatedlittlebylittle,resultinginthelargefluctuationofthewholeplanofmanagingtheriver.Withoutthecarefullycalculation,theadministratoroftheriverwilllosequitealotprofits.Therefore,weneedtooptimizethemethodofincreasingthenumberoftheteam,onthebasisofthepreviousone.Forthepurposeofthis,wemightaswelllaymoreemphasisondirectlyplanningthenumberoftheteam.Inotherwords,weneedtoconsidertheoperatingschemeofeveryboatinthesixmonthlongtravelseason,beforetheseasonbegins.Thuswecouldmaketherivertrafficmoreefficientandrational.1.1.1.2ConstraintConditionsandObjectiveFunctionsWeknowthatthetraveldurationofeveryboatislimitedin6to18nightsandweassumethatnoteamisallowedtostayinthesamecampsitesmorethan1night.SothenumberofcampsitesYmustsatisfy:(1)ForXteams,wedetermineeveryteamwillstaynights,whichmeanstheywillarriveatatotalofcampsitesduringtheirtripsmustobey:(2)页脚内容25
11东方文化培训中心经营方案Thevelocityofeveryboatis:(3)Togettheoptimaltravelplan,weneedtomakefurtherinstructionsandimprovementandintroducemorevariablestorepresentthepossiblepracticalproblemsinoperation.Fortherivermanager,thedurationandstartdateplanofeveryteamisextremelyimportant.Soitisnecessaryforustoprovidethespecificdurationanddate.Tosimplifyingtheproblem,weassumethatoneorafewteamscanstarttheirtripsinadayandtheymuststartatthesametime,forexample8:00a.m.Wesupposethedateofeveryteamisanditmustsatisfy:(4)Wealsoneedtoobtainhowmanynightsthetripstaysandwhereitlocates.Andweexpectatablelikebelow:Tab.3ExampleofFinalConclusionofOurExpectation…………………Alltheequationsabovemeet:(5)Tosimplifyandcalculatethevariablesabove,weneedtoadoptatotalofaquitenumberofvariables.Thenumberofvariablesis:(6)Apparently,eveniftheoperatingscaleisnotlarge,westillhavethousandsofvariablestodealwith.Thereforewewilltrytodecreaseitbasedonourreasonableassumptions。页脚内容25
12东方文化培训中心经营方案Wesupposethattheeveryboatsailsthesametimeeverydayintheirtrips,whichmeanstheysailsthesamemilesperday.Andweassumethateveryboatsailsatfrom8amto18am.Apparentlytheleasttimeofeverydaysailingis,here(mph).Thuswehave:(7)Themilesthateachteammovesforwardeveryday:(8)Andweget:(9)and,(10)Alsothenumberofcampsitesthattheteampassesbybutdoesnotstayis:(11)FirstFinalCampsiteFig.1SimulationofTravelProcessThenumberofcampsitesbetweeneverytwoneighboringteamsaccordingtoFig.1:(12)And(13)页脚内容25
13东方文化培训中心经营方案Howistheobjectivefunctionofoptimizationmodeldetermined?Asweknow,sincemanagersalwayswishmoretouriststojoininthetravel,themostdirectobjectivefunctionisthetotaltripnumberXwhichisalsothevariablethatistobefiguredout.Thus,wedefinetheutilizationpercentageofcampsite:(14)Obviously,themoreteamsareinvolvedintravelinafinitetimeperiod,thehigherutilizationpercentageisattained.Therefore,wecandefineanotherobjectivefunction:(15)Wealsohave:(16)Thus,wedefinethefinalobjectivefunction:(17)Aswestateabove,theboatsbehindcouldnevertranscendtheboatsinfront.Sowegettheconstraintconditions:(18)Finallyweyieldtheoptimizingmodel:页脚内容25
14东方文化培训中心经营方案(19)Inaddition,because6-month-longtimespanbringsaboutlargeverbosecalculation,weneedtodecreasethetimespananddividethewholecomplexproblemintoafeweasierquestionstodealwith.However,simplysplittingthetopicwillresultinthetremendouserrorsofoptimalresults[5].Asweknow,onemonthisacommonperiodforpeopletorecordevents.Weassumethatitisalsoconvenientformanagerstomaketheschedule,andweuseonemonthastheperiodtodiscuss.Bysolvingproblemsinthesmallerperiod,wesimplifytheamountofcalculation.1.1Solutions1.1.1IntroductionofPSOAlgorithmPSOalgorithmisoneofthecommonswarmintelligencemethodstosolveproblemsaboutparameteroptimization,parameterdesignandcombinatorialoptimization.Ithasbeenachievedbyprogramsandhasimpressiveoptimizationefficiencybecauseofthecombinationofswarm页脚内容25
15东方文化培训中心经营方案intelligenceandlearningfunction.Asaresult,PSOiswidelyusedinscienceandtechnologyresearches.ThecoreideaofPSOisderivedfromtheprocessofsimulatingsocialbehavior.Asastylizedrepresentationofthemovementoforganismsinabirdflockorfishschool,itisametaheuristicasitmakesfewornoassumptionsabouttheproblembeingoptimizedandcansearchverylargespacesofcandidatesolutions[6].ThemathematicalmodelofPSOisfollowing:(20)(21)Tab.4NotationforModelExpressionabovethespeedofeveryparticleattime;thepositionofeveryparticleattime;w(t)inertiaweight;,personalfactors,socialfactors;PbestthebestpositionofeveryindividualsofarGbestthebestpositionofglobalparticlessofar,randomnumberswhichareuniformlydistributedbetween0and1页脚内容25
16东方文化培训中心经营方案Fig.2SchemaoftheSearchingProcessforOptimalSolutionofPSOIfavalueofthedecisionvariablesisinteger,theproblemiscalledanintegerprogrammingproblem.Inthispaper,ourassumedvariablesareallintegers.Forequations(18)integerprogrammingproblems,wecanhaveoptimalsolutionbyapplicationofthedynamicprogrammingfundamentally.However,sinceoptimizationproblemsbecomelargerandmorecomplicate,ahighspeedandaccurateoptimizationmethodisexpected.Asforthisrivertripproblem,althoughthenumberofvariablesdecreasesalotbyourreasonableassumptionsandsimplification,theconstraintconditionsandcalculationamountsstillremainquitecomplex.Thereforeweadoptparticleswarmoptimization,toobtainourresultsasaccuratelyaswecaninafinitetime[7].However,thevalueobtainedbythemoveschemeofthePSOmethodisnonintegervalue,wecannotapplythePSOmethodtononlinearintegerprogrammingproblems.Thus,werevisethedecisionvariablestoapplytononlinearintegerprogrammingproblemsbytheroundingofvaluesobtainedbythemovescheme.Ontheotherhand,wecannotregardthePSOmethodadequatelyonaccuracyofsolutions.Thus,weanalyzetheprocessofPSOmethodindetail,andwefindoutthatapartoftheswarmdoesnotmoveonthesearchprocess.[8]Thisisattributedtoallelementsbecoming0whenwerevisesearchdirectionvectorelementintoanintegervalue.Thereforewerevisemovemethodstomakecertainthatallparticlesmovewhenallelementsofthesearcharedirectionvector.Tobeconcrete,wereviseinto1or-1dependingontheplusandminusontheelementthattheabsolutevalueismaximumintheelementofbeforerevisinganintegervalue.[9]页脚内容25
17东方文化培训中心经营方案1.1.1TheProcedureofRevisedPSOTheprocedureoftherevisedPSOproposedinthispapersummarizedasfollowsandisshowninFig.3[10].Step1:FindanintegerfeasiblesolutionbyPSOinconsiderationofthedegreeofviolationofconstraints,anduseitasthebasepointofthehomomorphousmapping,.LetandgotoStep2.Underthepremiseofassumptions,ifthereisonemotorboatteamstartingitstraveleveryday,thereareatmost30motorteamsinamonth.Theysailssamemileseverydayandtheystayatthesamecampsites,andbecausetheirstartingdatesdiffersonedayonebyone,theydonotcontradictwitheachotherinthewholetravel.So,wecangetagroupoffeasiblesolutions(assumingthereare20campsites):Step2:Generatefeasibleinitialintegersearchpositionsbasedonthehomomorphousmapping.GotoStep3.Step3:Iftheparticledoesnotmovesincethecurrentsearchpositionandthenextsearchpositionarethesameeither,reviseto1or-1dependingontheplusandminusontheelementthattheabsolutevalueismaximumintheelementofbeforerevisinganintegervalue.GotoStep4.Step4:Checkifthecurrentsearchpositionofeachparticleinthesub-swarmwithrepairbasedonthebisectionmethod,,isfeasible.Ifnot,repairittobefeasibleusingthebisectionmethod,andgotoStep5.Step5:Evaluateeachparticlebythevalueofobjectivefunctionfor.GotoStep6.Step6:Iftheevaluationfunctionvalueisbetterthantheevaluationfunctionvalueforthebestsearchpositionoftheparticleinitstrack,updatethebestsearchpositionoftheparticleinitstrack.Ifnot,letandgotoStep7.Step7:Iftheminimumofisbetterthantheevaluationfunctionvalueforthecurrentbestsearchpositionoftheswarm,updatethebestsearchpositionoftheswarm.Otherwise,letand页脚内容25
18东方文化培训中心经营方案gotoStep8.Step8:Iftheconditionofthesecessionissatisfied,applythesecessiontoeveryparticleaccordingtoagivenprobability,andgotoStep9.Step9:Finishift=Tmax(themaximalvalueoftime).Otherwise,letandreturntoStep3.页脚内容25
19东方文化培训中心经营方案Fig.3FlowChartoftheProcedureoftheRevisedPSO页脚内容25
20东方文化培训中心经营方案1.1.1OptimalScheduleUsingPSOalgorithmtooptimizethetopic,wefigureoutthefollowingoptimalresultsasthescheduleoffirstmonth:Tab.5OptimalScheduleOptimalX43No.NightsStartingDayNo.ThesequenceNo.ofCampsitewhichtheteamfirststayBoatTypeTravelhourperday11414M321311M331123O441133O451143O461453M371463M381062O491474M3101184O4111082O4121092O41311103O41411104O41511103O41611104O41710112O41811124O41911123O42010131O42113142M32211144O42313151M32410161O42510162O42613172M3279174O22813182M32910192O43011203O43111213O4页脚内容25
21东方文化培训中心经营方案3213211M33310222O43410232O43513231M33614234M33711244O43810252O43910261O44011274O44111283O44210292O44311303O4Theaverageofeachboat’sstop:(22)Thenumberofeverydayboatsstarted:(23)WeintroduceamatrixwithXrowsandYcolumnstodescribethestateofeverycampsiteandteamandwegetthecampsitesnumber:页脚内容25
22东方文化培训中心经营方案Fig.4StateofEveryCampsiteandTeamByanalyzingthefiguresabove,withtheincreasingnumberofcampingsites,moreteamscanbeallowedtostarttheirtrips,andtheblacksquareinthefigurebecomeslesscompressed.Becausetheteamhasmoreoptionstostaywhentherearemorecampsites,bythecoordinationofthemanager,moreboatshaveopportunitiestostarttheirtrips.Itiscertifiedthatoursimulationresultisreasonable.Infact,theresultofouroptimizationmodelaccordstothesequenceofthecodeelementtableweaddressabove.Ourdestinationofoptimizationistoaddthetotalnumberofrowsasmuchaspossible,sothattoaddmoreteamsinthetraveloperation.Italsoindicatesusthatwecouldfirsttransformtheproblemanddealwithitinaddressingthecodetable.Inthisway,wecoulddirectlyfigureoutthecampsitesstateswhichtheboatstayandobtainthemaximumtotalnumberofrows.Thusweavoidfacedirectlywiththecomplexdynamicprogrammingproblem.页脚内容25
23东方文化培训中心经营方案1.1.1TheRelationbetweentheOperationScheduleandYApparently,Yhasthedecisiveeffectonthescheduleformulation,andthecampsitescouldrepresentthecarryingcapacityoftheriver.UsingPSOalgorithms,wemakeoptimizationonthecircumstancesofdifferentvaluesofY.Accordingtotheoptimizationresult,weobtainthecurve-fittingresult:Fig.5FittingCurveofDataofXandYTheresultshowsthatcampsitetotalnumberandthemaximumnumberofteamshavethefollowingrelation:(24)Basedonthefittingresults,wededucethatthereislinearrelationbetweenXandY.However,lackingofenoughreferencedata,thereexistsdifferentpracticalsituation.Theaveragequantitiesofstartingteamsperdayalsoincreasesaccordingly:Tab.6AverageofStartingTeamsperDay2021222324252627282929页脚内容25
24东方文化培训中心经营方案1.431.571.731.771.92.032.172.272.302.332.371Conclusions1.1StrengthsInourmodel,wemakesomereasonableassumptionstodecreasethenumberofunknownvariables.Therefore,wetransformthecomplexproblemsintosolvablemathematicalmodelofnon-linearprogramming.Thetimespanintopicis6months.Wereducethescopeofourdiscussionsoastoobtaintheresultsmorequicklyandaccurately.Takingadvantageofthemethodofswarmintelligenceandlearningfunction,weadoptandimprovethePSOalgorithmtosolvetheproblem.Weproposethecoderepresentationtorepresentalltripschedules,andthinkupaninnovativeandmeaningfulthoughtofthetopic.1.2WeaknessesWhileourmodelsattempttogetareasonableandconvincingresult,therealsoexistlimitations.Forexample,weassumethateachteamtravelssomemileseveryday,andwedonotallowdifferentteamstomeetatthetravelcourse.Inalgorithmsaspect,thePSOalgorithmitselfhaslimitationsindealingwithlargescaleoptimization,whichprobablyfallsintolocaloptimumsituation.Ourfinalresultshowsthatonaveragetherewillbe1.6teamsstartingtheirtravel,nottakingaccountoftheconsiderationsondifferentweatherandseasons.页脚内容25
25东方文化培训中心经营方案1.1ImprovementsInourmodel,wedeterminethateachteamtravelssamemileseverydayandcannotmeetanyotherteams.Infact,itbringsdifferencesbetweenourmodelandpracticaltravelsituations.Loosingthiskindofassumptions,wecouldgetthebettersolutionthatkeepswiththereality.Inthispaper,wearemainlyonthesamesideofthemanagers,andignoringthesubjectiveroleoftouristsinthetourismservices.Inaddition,fromanecologicalstandpoint,over-explorationisnotbeneficialtotheenvironmentneartheriver.Therefore,weneedtointroducemorevaluablefactorstomakefurthermulti-objectiveoptimization,whichwillleadtoamoreconvincingandsignificantresult[11].Furthermore,indifferencetoourmodelwhichisbasedonthestatesoftheteams,wecouldalsoconstructourmodelfromtheviewofcampingsites.Thepossiblemethodistoseethecampingsitesasthefixednodesintopologicalstructure,tosolvetheproblemusingthegraphtheory.2References[1]J.A.Bieri,andC.A.Roberts,2000,UsingtheGrandCanyonRiverTripSimulatortoTestNewLaunchSchedulesontheColoradoRiver,AssociationforWomeninScience,29:6-10;[2]R.E.Borkan,andA.H.Underhill,1989,SimulatingtheEffectsofGlenCanyonDamReleasesonGrandCanyonRiverTrips,EnvironmentalManagement13:347-354;[3]C.A.Roberts,DougStallman,J.A.Bieri,2002,ModelingComplexHuman–EnvironmentInteractions:theGrandCanyonRiverTripSimulator,EcologicalModeling,153:181-196;[4]H.R.Gimblett,Roberts,C.A.Daniel,T.Mitner,M.Cherry,S.Kilbourne,D.Ratliff,M.Stallman,D.Bogle,R,2000b.IntelligentAgentModelingforSimulatingandEvaluatingRiverTripSchedulingScenariosfortheGrandCanyonNationalPark.IntegratingGISandAgentBasedModelingTechniquesforUnderstandingSocialandEcologicalProcesses.pp:245–275;[5]Bishop,I.D,H.R.Gimblett,1999.ManagementofRecreationalAreas:GeographicInformationSystems,AutonomousAgentsandVirtualReality.EnvironmentandPlanningBPlanningandDesign,27:423–435;[6]Xiu-juanLei,A-liFu,Jing-jingSun,2010,PerformanceAnalyzingandResearchingofImprovedPSOAlgorithm,ApplicationResearchofComputers,27(2):453-458;[7]J.KennedyandR.C.Eberhart,1997(b),ADiscreteBinary页脚内容25
26东方文化培训中心经营方案VersionoftheParticleSwarmAlgorithm.Proc.1997Conf.onSystems,Man,andCybernetics,4104–4109;[1]H.Yoshida,K.Kawata,Y.Fukuyama,andY.A.Nakanishi,ParticleSwarmOptimizationforReactivePowerandVoltageControlConsideringVoltageStability.InG.L.TorresandA.P.AlvesdaSilva,Eds.,Proc.Intl.Conf.onIntelligentSystemApplicationtoPowerSystems,RiodeJaneiro,Brazil,1999.pp.117–121;[2]VandenBergh,A.Engelbrecht,UsingNeighbourhoodwiththeGuaranteedConvergencePSO,2003IEEESwarmIntelligenceSymposium,2003:235-242;[3]M.ClercandJ.Kennedy,2002,TheParticleSwarm:Explosion,StabilityandConvergenceinaMulti-DimensionalComplexSpace,IEEETransactionaonEvolutionaryComputation,Vol.6,58-73;[4]ParsopoulosKEandVrahatisMN,2002,ParticleSwarmOptimizationMethodinMultiobjectiveProblems.ProceedingsACMSymposiumonAppliedComputing,pp.603-607;页脚内容25
27东方文化培训中心经营方案MEMOTo:ManagersoftheriverFrom:Team12911Date:13FebruarySubject:OptimizationonrivertripsplanWearewritingtoreportourkeyfindingsinthesefourdays.Findings1.WeareabletofigureoutthemaximumvalueoftripstotalnumberX,accordingtothegivenvalueofcampsitestotalnumberY.WhenYequalsto20,themaximumXis43.2.WiththeincreasingvalueofY,thecarryingcapacityoftheriverimproves,andXincreasesaccordingly.3.Toobtainthemoreaccuratesolution,weneedtointroducemoreusefulfactors.Thusthemulti-objectivemethodcouldbeutilized.Recommendations1.Forenvironmentalreasons,therivershouldnotbeoverexploited,sothevalueofYshouldnotbetoolarge.2.Forpersonalexperienceoftourists,toolargeXandYprobablydecreasetheRiver’sattractionandprofits.页脚内容25
此文档下载收益归作者所有