资源描述:
《《金融数学》(4)收益率》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
收益率(YieldRate)孟生旺
12主要内容净现值与收益率基金的收益率币值加权收益率时间加权收益率再投资与修正收益率基金的收益分配投资组合法投资年度法
23净现值(netpresentvalue,NPV)净现值越大,表示收益越高。净现值
34收益率(yieldrate):使得资金流入的现值与资金流出的现值相等时的利率。也称为内涵报酬率(internalrateofreturn,IRR)收益率也是使得净现值等于零的利率:收益率
45例:期初投资20万元,在今后的5年内每年末获得5万元的收入。假设投资者A的资金成本为5%,投资者B的资金成本为10%。分析投资者A和投资者B的投资决策。解:(1)该项目的净现值为注:NPV函数中不含0点的现金流。
56(2)令净现值等于零,即可以计算出该项目的收益率为7.93%,大于A的资金成本(5%),可行小于B的资金成本(10%),不可行
6ProjectPrequiresaninvestmentof4000attime0.Theinvestmentpays1000attime1and4000attime2.ProjectQrequiresaninvestmentofxattime2.Theinvestmentpays2000attime0and4000attime1.Thenetpresentvaluesofthetwoprojectsareequalataninterestrateof10%.CalculatetheyieldrateofprojectQ.Examplet012P-400010004000Q20004000-x
78Solution:t012P-400010004000Q20004000-x
89f=function(x){v=1.1^(-1)-4000+1000*v+4000*v^2-2000-4000*v+x*v^2}x0=uniroot(f,c(0,10000))$rootx0##[1]6560f2=function(i){v=1/(1+i)2000+4000*v-x0*v^2}uniroot(f2,c(0,1))$root##[1]0.0688
9求解收益率可能出现的三种情况无解多重解唯一解!10
1011例(不存在):,求收益率。解:净现值为由于,方程无实数解,不存在收益率(见下页图示)。
1112i=seq(-0.1,1,0.001)v=(1+i)^(-1)NPV=-100+230*v-133*v^2plot(i,NPV,type='l',col=2,ylim=c(-10,5),lwd=2,xlab='利率',ylab='净现值',main='收益率不存在')abline(h=0,col=3,lty=2)
1213Example(不唯一):Consideratransactioninwhichapersonmakespaymentsof$100immediatelyand$132attheendoftwoyearsinexchangeforapaymentinreturnof$230attheendofoneyear.100132230
1314100132230
1415要求10%以下的收益率,不可行。要求10%~20%的收益率,可行!要求20%以上的收益率,不可行。不可行可行不可行
1516收益率唯一性的条件准则一:资金净流入只改变过一次符号。准则二:用收益率计算资金净流入的累积值,始终为负,直至最后一年末才等于零。
1617多重收益率条件下的资金净流入及其累积值例:多重收益率(续前例)时间流出流入净流入按20%累积01000-100-1001023023011021320-1320
1718多重收益率条件下的资金净流入及其累积值时间流出流入净流入按10%累积01000-100-1001023023012021320-1320
1819年度资金流出资金流入资金净流入Rt资金净流入的累积值(下页)010-10–10.0011-1–12.002143–10.203143–8.214143–6.035143–3.646440例:收益率是唯一的
1920
2021基金的收益率:基金的利息度量(Interestmeasurementofafund)币值加权收益率(dollar-weightedyieldrate):度量投资者的业绩时间加权收益率(time-weightedyieldrate):度量基金经理人的业绩
2122币值加权收益率:精确计算假设:期初本金为A0,在时刻t的新增投资为Ct,投资收益率为i,在期末的累积值可表示为(一个时期)用A1表示期末的累积值,则有注:Ct>0增加投资;Ct<0减少投资。由此求得收益率i
2223近似公式:对于不足一个时期的投资,用单利近似复利
2324分母是日平均本金余额。
24ExampleAtthebeginningoftheyear,aninvestmentfundwasestablishedwithaninitialdepositof1000.Anewdepositof1000wasmadeattheendof4months.Withdrawalsof200and500weremadeattheendof6monthsand8months,respectively.Theamountinthefundattheendoftheyearis1500.Calculatethedollar-weightedyieldrateearnedbythefundduringtheyear.1000100020050015004/126/128/12
2526解:A1=A0+C+I当年利息:I=1500-(1000+1000-200-500)=2001000100020050015004/126/128/12精确计算?
26近似值14.29%,精确值14.33%,误差为0.04%f=function(i){1000*(1+i)+1000*(1+i)^(8/12)-200*(1+i)^(6/12)-500*(1+i)^(4/12)-1500}uniroot(f,c(0,1))$root##[1]0.14331000100020050015004/126/128/12
2728时间加权收益率(time-weightedratesofinterest)币值加权收益率:受本金增减变化的影响。而本金的增减由投资者决定。可以衡量投资者的收益,但不能衡量经理人的业绩。时间加权收益率:扣除了本金增减变化的影响后所计算的收益率。衡量经理人的业绩。
28set.seed(111)x=seq(0,1,0.05)y=50+x*12+rnorm(length(x),0,2)plot(x,y,type='o',xlab="时间",ylab='股价',col=2,pch=16)
2930时间加权收益率的计算期初的本金为A(0)在第k个时间区间末的累积值为Ak在第k个时间区间末的新增投资为Ck(k=1,2,…,n)在年末的累积值为A(1)
30A(0)A1A2A3C1C2C3累积值新增投资A1+C1A2+C2A3+C3收益率AnCnAn+CnA(1)………
3132ExampleOnJanuary1aninvestmentaccountisworth$100,000.OnMay1thevaluehasincreasedto$112,000and$30,000ofnewprincipalisdeposited.OnNovember1thevaluehasdeclinedto$125,000and$42,000iswithdrawn.OnJanuary1ofthefollowingyeartheinvestmentaccountisagainworth$100,000.Computetheyieldrateby:(1)thedollar-weightedmethod;(2)thetime-weightedmethod.
3233解:(1)币值加权收益率I=100000–(100000+3000042000)=12000
3334(2)时间加权收益率两种收益率差距为何这么大?10.62%与18.79%1.120.881.20
34Exercise1000isdepositedintoafundonJanuary1,2013.AnotherdepositismadeintothefundonJuly1,2013.OnJanuary1,2014,thebalanceinthefundis2000.Thetime-weightedyieldrateis10%andthedollar-weightedyieldrateis9%.Calculatetheannualeffectiveinterestrateearnedonthefundduringthefirstsixmonthof2013.1000AC2000?
35解:币值加权收益率9%时间加权收益率10%故1000AC2000
3637再投资与修正收益率再投资:前期投资的收入按新的利率再次进行投资。例:考虑两种可选的投资项目A)投资5年,年利率为9%B)投资10年,年利率为8%如果两种投资在10年期间的收益无差异,项目A在5年后的再投资收益率应为多少?
3738例:玛丽每年初投资1000,投资5年,每年可以获得9%的收益。每年的收益按9%进行再投资。在第5年末,投资的价值为X。约翰每年初投资1000,投资5年,每年可以获得10%的收益。每年的收益按8%进行再投资。在第5年末,投资的价值为Y。计算X和Y,以及约翰的投资收益率。解:玛丽在第5年末的投资价值为
38约翰的本金余额:时间012345余额100020003000400050005000利息收入:时间012345金额100200300400500利息收入在第5年末的累积值:第5年末的总价值:6669.91约翰的投资收益率:
3940练习在t=0,约翰在一个基金中投资2000,每年赚取8%的收益率.他将基金每年产生的利息收入重新投资于一个独立账户,该账户每年赚取9%的收益率。独立帐户中的利息收入被投资于一个副账户,该账户每年赚取7%的收益率。计算t=10时整个投资的累积值,以及这10年期间的收益率.
4041时间012391010年末的价值基金20002000独立账户160160160…16016016010副账户1609%21609%91609%
4142副账户的累积值:整个投资的累积值:2000+(10)(160)+839.62=4439.62收益率=(4439.62/2000)1/10–1=8.3%解:
4243修正收益率:当再投资利率与筹资利率不同时,评价项目应该使用修正收益率(modifiedrateofinternalreturn)。如何计算修正收益率?资金流出(成本):用筹资利率计算现值资金流入(收益):用再投资利率计算累积值
43例:投资者以8%的利率借入资金进行投资,在时点0的投资额为10000元,在第2年末的投资额为11550元。在第1年末获得了21500元的收益。投资者对收益进行再投资的利率为5%。计算该项投资的修正收益率。021100001155021500
4445投资收入以5%的利率再投资,故在第2年末的累积值为令修正收益率为i,则有021100001155021500【解】筹资利率为8%,资金流出的现值为
4546计算修正收益率的EXCEL函数:=MIRR({-10000,21500,-11550},8%,5%)021100001155021500
46基金的收益分配(Allocatinginvestmentincome)47基金(Fund):为某种目的而设立的一定数量的资金。基金的收益:收入:利息,股息,资本利得(如股价上涨)收入减去费用后的净收益可供基金持有人分配。问题:基金包括不同时期的投资。如何把基金的收益分配给不同时期的投资?
4748基金收益的分配方法:投资组合法(portfoliomethod)投资年度法(investmentmethod)
4849投资组合法(portfoliomethods)方法:按照基金的平均收益率分配投资收入。适用情况:基金的收益率水平一直保持恒定。例:基金的收益率为6%,某投资者的投资额是10000元,投资期限是9个月,则分配给他的利息收入是复利法:10000(1+0.06)9/12–10000=446.71单利法:10000×6%×9/12=450
49组合法分配收益存在的问题:各年的收益率不同时,投资组合法可能不公平。例:假设:2015年投资的收益率8%,2016年投资的收益率10%,平均为8.5%。如果对2016年的新投资按8.5%分配收益,不公平,也不利于吸引新投资。
50如何解决上述问题?用投资年度方法分配收益。如:2015年的投资按8%分配收益。2016年的新增投资,按10%分配收益。例:2015年初投资的1单位,在2016年初增长为1.08,在2016年末分配收益时:本金1按8%分配收益利息0.08按10%分配收益故平均收益率为:(1×0.08+0.08×0.1)1.08=8.148%
5152投资年度法(investmentyearmethod,newyearmethod)各年的收益率不同?投资年度法分配收益时使用的两种利率:投资年度利率:投资年度不同,利率不同。组合利率:不同年度的投资使用相同的平均利率。投资年度法的应用:新投资在前几年按投资年度利率分配收益,超过一定年数以后,按组合利率分配收益。
5253投资年度利率例:2010年的投资在分配收益时使用的利率
5354投资年度利率例:2012年的投资在分配收益时使用的利率
5455投资年度利率例:2015年的投资在分配收益时使用的利率
5556投资年度利率例:各年的投资在2014年分配收益时使用的利率
56CalendaryearofinvestmentInvestmentyearratesCalendaryearofportfolioratePortfolioratei1i2i3200010%10%r20038%200112%5%10%2004r-0.0120028%r-0.0212%20056%20039%11%6%20069%20047%7%10%200710%Exercise:Aninvestmentof100ismadeatthebeginningofyears2000,2001,and2002.Thetotalamountofinvestmentinterestcreditedbythefundduringtheyear2003isequalto28.40.Findr.
5758解:2000年初的投资在2003年的利息收入:100(1.10)(1.10)(1+r)(0.08)2001年初的投资在2003年的利息收入为:100(1.12)(1.05)(0.1)=11.762002年初的投资在2003年的利息收入为:100(1.08)(r‒0.02)总利息收入=28.4,故r=7.75%
58一个从第2年末到第5年末的现金流,时刻t的付款率为t+2,利息力为0.05t。计算该现金流在t=3时刻的价值。计算该现金流从时刻t=2到时刻t=3的收益率。59练习题
5960
6061ExercisePaymentsof1000areinvestedattheendofeachyearfor5years.Thepaymentsearninterestatanannualeffectiverateof10%.Theinterestcanbereinvestedatanannualeffectiverateof6%inthefirst4yearsandatanannualeffectiverateofkthereafter.Theamountinthefundattheendof5yearsis6090.Calculatek.
6162Solution:k=10.51%Hence,theinterestpaymentsare:
6263ExerciseEricdeposits12intoafundattime0andanadditional12intothesamefundattime10.Thefundcreditsinterestatanannualeffectiverateofi.Interestispayableannuallyandreinvestedatanannualeffectiverateof0.75i.Attime20,theaccumulatedamountofthereinvestedinterestpaymentsisequalto64.Calculatei,i>0.
6364Thefuturevalueattime20ofthiscashflowis
6465ExerciseVictorinvests300intoabankaccountatthebeginningofeachyearfor20years.Theaccountpaysoutinterestattheendofeveryyearatanannualeffectiveinterestrateofi.Theinterestisreinvestedatanannualeffectiverateof(i/2).Theyieldrateontheentireinvestmentoverthe20yearperiodis8%annualeffective.Determinei.
6566SolutionSincetheyieldrateontheentireinvestmentoverthe20yearperiodis8%annualeffective,theaccumulatedvalueattheendof20yearsisThecashflowoftheinterestsisSo,thefuturevalueattime20ofthiscashflowis
6667ExerciseSusaninvestsZattheendofeachyearforsevenyearsatanannualeffectiveinterestrateof5%.Theinterestcreditedattheendofeachyearisreinvestedatanannualeffectiverateof6%.TheaccumulatedvalueattheendofsevenyearsisX.LoriinvestsZattheendofeachyearfor14yearsatanannualeffectiveinterestrateof2.5%.Theinterestcreditedattheendofeachyearisreinvestedatanannualeffectiverateof3%.Theaccumulatedvalueattheendof14yearsisY.CalculateY/X.
6768SolutionWemayassumethatZ=1.Susan’saccumulatedvalueconsistsofher$7investedplusthecashflowforherinterest.ThecashflowofherinterestpaymentsareTheaccumulatedvalueofthiscashflowisSo,Susan’saccumulatedvalueisX=8.1653.
6869TheaccumulatedvalueofthiscashflowisSo,Susan’saccumulatedvalueisY=16.5719.WehavethatY/X=2.0296.Lori’saccumulatedvalueconsistsofher$14investedplusthecashflowforherinterest.Thecashflowofherinterestpaymentsare
6970Exercise:Youaregiventhefollowinginformationabouttheactivityintwodifferentinvestmentaccounts:
70AccountLDateFundvaluebeforeactivityActivityDepositWithdrawalJanuary1,20013100.0July1,2013125.0xDecember31,20013105.8During2013,thedollar-weightedreturnforinvestmentaccountKequalsthetime-weightedreturnforinvestmentaccountL,whichequalsi.Calculatei.AccountKDateFundvaluebeforeactivityActivityDepositWithdrawalJanuary1,2013100.0July1,2013125.0xOctober1,2013110.02xDecember31,2013125.0
71AmountofinterestI=125–100–2x+x=25–xForaccountL:Sox=10i=15%ForaccountK: