Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021

Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021

ID:81816742

大小:8.15 MB

页数:9页

时间:2023-07-21

上传者:U-14522
Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021_第1页
Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021_第2页
Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021_第3页
Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021_第4页
Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021_第5页
Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021_第6页
Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021_第7页
Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021_第8页
Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021_第9页
资源描述:

《Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance - Ghosh et al. - 2021》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCCArticleHeterovalentSubstitutioninMixedHalidePerovskiteQuantumDotsforImprovedandStablePhotovoltaicPerformancePublishedaspartofTheJournalofPhysicalChemistryvirtualspecialissue“D.D.SarmaFestschrift”.††DibyenduGhosh,Md.YusufAli,AnimaGhosh,ArnabMandal,andSayanBhattacharyya*CiteThis:J.Phys.Chem.C2021,125,5485−5493ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Oneofthestrategiestoimprovethedeviceperformanceofmetal-halideperovskitesolarcellsistoaltertheelectronicandopticalpropertiesoftheperovskitelatticebymetaliondoping.Inthiswork,aliovalentdopingofsilverattheleadsiteofCsPbBr1.5I1.5quantumdots(QDs)showsstrikingprospectsinimprovingthephotovoltaic(PV)deviceperformance.Latticedopingcouldbeachievedonlyupto∼3.5atom%Ag+withrespecttoPb2+whichhassignificantimpactontheelectronicandopticalpropertiesoftheQDs.Thebandgapcouldbereducedfrom2.15eVforpristineQDsto2.12eVwith3.5atom%Ag-doping,beyondwhichmidbandgapstatesarecreatedalongwiththeformationofasecondaryAgIphasewithhigherAg+substitution.Densityfunctionaltheory(DFT)showsenhancedopticalabsorptioncoefficientandp-typecharacteroftheAg-dopedQDs.WiththeQDshaving3.5atom%Ag,asignificant∼20%enhancementinphotoconversionefficiency(PCE)isobservedupto9.67±0.12%duetothereductionofsurfaceandintrinsicdefects,decreaseinnonradiativerecombinationleadingtoanincreaseincarrierlifetime,andincreaseinchargetransfer.Althoughingeneralall-inorganicperovskite(AIPSK)QDsareattractivebecauseoftheirhighercrystallinity,betteropticalproperty,andeasysolutionprocessability,thesolutionstabilityofAIPSKQDsisnotthesameasthatinPVdevices.After3.5atom%Ag-doping,ourPVdevicesshowextremelypromisingambientstabilityfor575h(24days)withlessthan5%dropinPCEincomparisonto12%dropforpristineQDdevices.1.INTRODUCTIONNonetheless,AIPSKQDsalonestilllagbehindtheexpectedbenchmarkduetocarrierrecombinationandstabilityissues.ThemonumentalresearchactivitiesonABX3metal-halide+++2+Bothisovalentandaliovalentlatticedopinghasbeenperovskites(whereA=CH3NH3,CH(NH2)2,Cs;B=Pb,Sn2+,andX=Cl−,Br−,I−)areduetotheirbrilliantpropertiesconsideredapromisingapproachtoalleviatetheseadversa-DownloadedviaUNIVOFNEWMEXICOonMay15,2021at21:07:26(UTC).ries.15,16Hybridorganic−inorganicperovskitesaredopedwithsuchasdefecttolerance,highabsorption,andextinctionseveralheteroelementslikeBa2+,Cd2+,Sr2+,Sn2+,andcoefficients,appropriatebandgaps,ambipolarchargetrans-Mn2+,17−21whereaspartialreplacementofPb2+bySn2+inanport,longcarrierdiffusionlengthandlifetime,smallexcitonSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.1−4bindingenergy,andsolutionprocessability.PerovskitesolarAIPSKcompositioncouldretainanimpressivePCEof202+celldeviceshavealreadyreachedacertified25.5%efficiencyin∼11.33%.LimitedsubstitutionofPbbyaliovalentmetalaveryshortspanoftime5whichhasunderpinneditsgreatcationssuchasK+,Ce3+,andYb3+hasalsoshownpotentialasafuturecompetitortocommercializedSisolarcell.prospects,22,23whileAl3+dopinghasresultedinimprovingHowever,ambientstabilityofthesePVdevicesfacesaconstantthecrystalqualityandreducingthelatticestrain.24ThechallengeduetotheinevitabledecompositionoftheblackattenuationofcarrierconcentrationbyshiftingtheFermilevelperovskite(α-phase)oforganic−inorganicleadtri-iodideto(E)inAg+dopedorganic−inorganicperovskitewasfirst6Ftheinactiveyellowδ-phase.AlsovolatileorganicspeciesaredemonstratedbytheCaiandChengroupin2017.25ThisAg-formedinhumidenvironmentsleadingtolatticedeformationdopingstrategywasfollowedbyafewotherresearchgroupswhichdecreasesthephotoluminescence(PL)quantum7,8yield.AIPSKQDsprovidearemedyforbeingmoremoisture,air,light,andheatresistant,9,10alongsidesuperiorReceived:December14,2020optoelectronicpropertiesreaching100%quantumyield,11Revised:February21,2021achievingsolarcellPCE∼10.77%12andreachingbeyond13%Published:March9,202113withCsPbI2Brcomposition.TheQDsalsohelpinincreasingthestabilityoforgano-leadhalideperovskitebulkfilmsby14fillingthepin-holesandfacilitatingchargetransport.©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.0c111225485J.Phys.Chem.C2021,125,5485−5493

1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticledemonstratingthebettermentofchargetransportandimpurities,theQDsolutionwascentrifugedagainwithan26−28lesseningthedetrimentaloxidativedegradation.WithappropriateamountofMeOAcat7000rpmfor10min.Thesmallernanoparticles,inparticularQDs,thediffusionofprecipitatewasdissolvedinhexaneandstoredat4°Cfor12dopantionsbecomeincreasinglychallengingduetoaself-h.Thesupernatantwascentrifugedandtheprecipitatewas29,30purificationmechanismoftheQDs.StartingfromII−VI,driedundervacuum.3132I−III−VIsemiconductors,toPSKs,thereisalow-to-high2.6.PreparationofCompactTiO2(c-TiO2)Precursor.dopantconcentrationthresholdforexclusivelatticedoping;AcidicsolutionofethanolanddiluteHClwasaddeddropwisebeyondaparticularlimit,eitherthedopantionsareexpelledtounderconstantstirringinanethanolicsolutionofTTIP.ThetheQDsurfacewithamoreioniccharacterorthedopantisresultingsolutionwasstirredforanother30mintoyieldasegregatedasclusters.BoththesizeofthedopantionandQDtransparenthomogeneousprecursorsolution.sizedeterminethisthreshold.2.7.FabricationofPVDevices.FTOglasseswithsheetHerein,westudytheeffectofAgincorporationinAIPSKresistance∼5−6Ωcm−1werecleanedstepwisewithsoapCsPbBr1.5I1.5QDsontheirstructuralandphotophysicalwater,distilledwater,acetone,andisopropanoleachfor10minpropertiesandfinallyonthePVdeviceefficiencyandambientinanultrasonicbathfollowedbydryingunderN2flow.Thestability.CsPbBr1.5I1.5compositionischosensinceitissubstrateswereexposedunderUVozonelampfor5mintorelativelymorestableunderhumidenvironmentandelevatedremoveresidualorganicimpuritiesandthentransferredinsidetemperatures.Ag+issuitableasthedopantionbecauseofitstheN2filledglovebox.Fordepositingc-TiO2electroncloserionicradius(115pm)tothatofPb2+(119pm)andtransportinglayer(ETL),TiO2precursorsolutionwasspinbecausepartialsubstitutionofPb2+byAg+doesnotperturbcoatedat2000rpmfor30s,andthecoatedsubstrateswere25+thecrystalstructuresignificantly.WeobservethatAgfirstdriedonapreheatedhotplateat100°Cfor10minanddopingupto3.5atom%withrespecttoPb2+helpstoreducethenannealedat550°Cinsideaboxfurnacefor50min.theintrinsicdefectstatesandcarrierrecombination,therebyChlorobenzenewasusedfordispersingtheas-synthesizedincreasingthelifetimeofchargecarriersforbetterchancesofCPBIorAg-CPBIQDs(50mg/mL)ontoc-TiO2at1000rpmextractioninthePVdevice.PSKlatticedopingwith3.5atomfor30s.Thesubstrateswerethendippedinleadnitrate%Agenables∼20%increaseinPCEandsustainsthePVdissolvedinmethylacetateforremovalofligandsanddriedatperformanceforatleast575h(24days)withlessthan5%60°Cfor2min.Theabovestatedprocesswasrepeated3dropinPCE.times.OntopoftheQDperovskitelayer,spiro-MeOTADholetransportlayer(HTL)wasdepositedbyspincoatingofa2.EXPERIMENTALSECTIONsolutioncontaining72.3mg/mLofspiro-MeOTADin2.1.Materials.Lead(II)bromide(PbBr2,99.999%tracechlorobenzene,28.8μLof4-tert-butylpyridine,and17.5μLmetalbasis),lead(II)iodide(PbI2,99.999%tracemetalbasis),oflithiumbis(trifluoromethanesulfonyl)imide(LiTFSI)(520cesiumcarbonate(Cs2CO3,reagentplus,99%),silvernitratemg/mLinacetonitrile)at2000rpmfor30s.Anyresidual(AgNO3,Vetec,>99.5%),octadecene(ODE,technicalgrade,solventwasremovedbyheatingthesubstrateat60°Cfor590%),oleylamine(OAm,70%),oleicacid(OAc,90%),min.TennanometersofMoO3(atadepositionrateof0.1−0.3titaniumisopropoxide(TTIP,>97%),spiro-MeOTADÅ/s)andAg(100nmatadepositionrate0.3−1Å/s)were(>99%),bis(trifluoromethane)sulfonimidelithiumsaltsequentiallydepositedontopofHTLinsidethethermalevaporator(basepressureof5.5×10−6Torr).Thedeposited(99.95%),4-tert-butylpyridine(TBP,96%),andanhydrouschlorobenzene(99.8%)werepurchasedfromSigma-Aldrich.filmthicknessofMoO3andAgtopelectrodewasestimatedinFTO(TCO22-7,2.2mmthickness)andTi-nanoxide(T/SP,situviaquartzcrystalthicknessmonitor.Theactivedeviceareawasmaintainedat0.06cm2.particlesize20nm)werepurchasedfromSolaronix.Hexane(fractionfrompetroleum)andmethylacetate(MeOAc,2.8.CharacterizationandMeasurements.TheX-raySynthesisgrade)werepurchasedfromMerck.diffraction(XRD)measurementswerecarriedoutwitha2.2.SynthesisofCs-Oleate.InatypicalsynthesisRigakupowderX-raydiffractometerhavingCuKα=1.54059protocol,0.18gofCs2CO3,8mLofODE,and1mLofÅradiation.UV−visabsorbancespectrawererecordedbyOAcweretakenina50mLthree-neckedround-bottomflaskJascoV-670spectrophotometer.PLspectraweremeasuredandkeptundervacuumfor30min,followedbyheatingat120withaHoribaJobinYvonFluorologusingaXelampasthe°Cforanother30min.N2gaswaspurgeduntilthesolutionexcitationsourcewithanexcitationwavelengthof450nm.PLbecameclear.Thissolutionwaskeptatthistemperatureunderquantumyield(PLQY)wasmeasuredwiththehelpofaN2forfurtheruse.standarddyeCoumarin153.Thefluorescencelifetimeswere2.3.SynthesisofCsPbBr1.5I1.5(CPBI)QDs.Thesynthesisrecordedbytime-correlatedsingle-photoncountingspectro-33fluorimeterfromHORIBAJobinYvonIBH.ThefluorescenceofCPBIissimilartoourpreviousreport.PbBr2andPbI2(0.5mmoleach)in50mLODEweredissolvedstepwisefirstlifetimewascalculatedbyfittingthedecaycurveswithaat120°Cfor1hundervacuumandthenat140°CunderN2programinstalledbyIBH.Fieldemissionscanningelectronforanother30minfollowedbyadding5mLeachofOAmandmicroscopy(FESEM)imageswererecordedinCarlZeissOAc.Inthefinalstep,4mLofCs-OleatewasaddedintotheSUPRA55VPFESEM.Transmissionelectronmicroscopysolution,andafter5sthesolutionwasquenchedinice-cooled(TEM)imageswererecordedwiththeDST-FISTfacility,waterbath.IISERKolkata,JEOL,JEM-2100Fequippedwiththeenergy2.4.SynthesisofAg-CPBIQDs.Ag-incorporatedCPBIdispersiveanalysisofX-rays(EDAX)setup.TorecordtheQDsweresynthesizedbythesameprocedureasaboveexceptTEMandscanningTEM−highangleannulardarkfieldforthestoichiometricadditionofAgNOastheAg+source.(STEM-HAADF)images,selectedareaelectrondiffraction32.5.IsolationofCPBIandAg-CPBIQDs.Freshly(SAED),EDAX,andelementalmapping,theQDswerepreparedQDswerecentrifugedat7000rpmfor10min,anddispersedinhexane.Atomicforcemicroscope(AFM)imagestheprecipitatewasdissolvedinhexane.TogetridofweretakenwiththesamedispersionbyNT-MDTNTEGRA5486https://dx.doi.org/10.1021/acs.jpcc.0c11122J.Phys.Chem.C2021,125,5485−5493

2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure1.(a)SchematicrepresentationofthepristineandAg-dopedCsPbBr1.5I1.5crystalstructuresobtainedbyRietveldrefinementofXRDpatterns.Vacindicatesanionvacancy.(b)XRDpatternsofQDpowdersandzoomed-inviewof(110)plane.(c)UV−vis-NIRabsorption,(d)PLemission,and(e)transientPL(TCSPC)spectraofpristineandAg-dopedCPBIQDs.instrumentfromNT-MDT(SantaClara,CA).SolarcelltheAgatomthereisaslightchangeinthecrystalstructure.So,measurementswerecarriedoutusingsteadystateAM1.5Ginadditiontospin−orbitcoupling(SOC)wehaveconsideredSolarSimulatorClassAAAModel:PEC-L01(Batsol)andthespinpolarizationeffectforsupercellstructureoptimizationBioLogicelectrochemicalworkstation(ModelNo.SP-300).andelectronicpropertyevaluations.2.9.ComputationalDetails.SystematicelectronicstructurewascalculatedwithintheframeworkofDFT3.RESULTSANDDISCUSSIONS34formalismasimplementedinWien2kcode.Inourmodeling,3.1.StructuralCharacterization.ThepristineandAg-wehaveconsideredAgincorporationindopedCsPbBr1.5I1.5colloidalQDsweresynthesizedbyhotCsPbI1.5Br1.5(CsPb1−xAgxI1.5Br1.5)withconstituentelementsinjectionat140°CwheretheQDsarestabilizedbyOAmandinthesupercellas8Cs,8Pb,12Br,and12I,where8PbOAcligandcapping(SupportingInformation,FigureS1).Onatomswerevariedincombinationof(1Ag,7Pb)and(2Ag,6thebasisofourpreviousfindings,33wehavechosenmixedPb-Pb)forvariousdopingconcentrations.ThePerdew−Burke−halideperovskiteQDsasthehoststructuresincehalf-Ernzerhof(PBE)exchangecorrelationpotentialofthesubstitutionofI−byBr−helpsinelevatingthediffusiongeneralizedgradientapproximation(GGA)35andTranand−barrierofImigrationwhichfavorablyhindersdecomposition36BlahamodifiedBeckeandJohnson(TB-mBJ)potentialhaveoftheperovskitelatticetotheyellowphase.ThetotalAg37beenusedthroughoutthecalculations.ThesizeofK-pointloadingineachsamplewasquantitativelyverifiedbyEDAXmeshesoftheCsPbI1.5Br1.5supercellandCsPb1−xAgxI1.5Br1.5analysis(FigureS2andTableS1).Hereafter,pristinestructureissetto6×6×6.Theself-consistentconvergenceCsPbBr1.5I1.5QDsarereferredtoasCPBI,andbasedonthecalculationswereconsideredsimilartotheearliercalculationofAgatom%withrespecttoPbobtainedfromtheEDAXatotalenergytoleranceof10−5Ry.38Thesimilarionicradiusanalysis(TableS1)theQDsaredesignatedasAg0.01-CPBI,ofAg+(115pm)andPb2+(119pm)helpedtoincreasetheAg0.02-CPBI,Ag0.035-CPBIandAg0.057-CPBI,respectively.tolerancefactor,andthedeviceperformanceisbetterthanthatRietveldrefinementoftheXRDpatternsvalidatesphaseofotherelementalsubstitutions(e.g.,Sn2+,Sr2+,In3+,andsopurityoftheQDsexceptthatforAg0.057-CPBIwhere∼2.5wtforth).However,duetoanoddnumberofvalenceelectronsin%AgIisfoundsegregatedalongwiththecubicQDphase5487https://dx.doi.org/10.1021/acs.jpcc.0c11122J.Phys.Chem.C2021,125,5485−5493

3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(FigureS3andTableS2).OuranalysisshowsthattheupperthresholdoftheAg+substitutionlimitatthePb2+siteis∼3.5atom%(CsPb0.965Ag0.035Br1.5I1.5),beyondwhichAgIispresentasaminorsecondaryphase.Itisinterestingtonotethatwith5.7atom%Ag(EDAXdata),∼2.5%contributionisfromAgI(XRDRietveldanalysis),thusindicatingthelatticedopinglimitof3−3.5%.Moreover,theAg/Pbratioof4atom%obtainedbyXRDanalysisisagoodmatchwith3.5atom%obtainedbyEDAXanalysis(TableS1).Thisclearlymanifeststheself-purificationmechanisminQDswhereexcessAg+isexpelledfromthelattice.TheRietveldrefinedcrystalstructuresinFigure1avalidatesthelimitedaliovalentsubstitutionofPb2+byAg+withinthePbX4−octahedra.6TheXRDpatternsofthecubicα-phase(JCPDSNo.54-0752)donotshowanynoticeablealterationswiththeincreaseofAgconcentrationintheperovskitelattice(Figure1b),wherebythespacegroupPm3̅misalwaysmaintained.However,theincorporationofAg+atthePb2+siteisevidentfromthehigher2θshiftoftheXRDreflectionsinparticulartheΔ2θshiftof(110)peakisby0.3°fromCPBItoAg0.057-CPBI(zoomedviewofFigure1b).ThisshiftcanbewellunderstoodfromthesubstitutionoflargerPb2+ofionicradius119pmbysmallerAg+of115pmwhichleadstoaloweringoftheinterplanard-Figure2.(a)TEMand(b)HRTEMimagesand(c)SAEDpatternofspacingvaluesandadecreaseofunitcellvolume(TableS1).pristineCPBIQDs.(d)TEMand(e)HRTEMimagesand(f)SAED3.2.OpticalCharacterization.TheabsorptionandpatternofAg0.035-CPBIQDs.Latticefringesinpanels(b,e)showtheemissionspectrawererecordedwiththepurifiedcolloidal(110)planeandprominentreflectionsofthecubiclatticeareQDsdispersedinhexane.TheabsorptiononsetshiftsfromobservedintheSAEDpatterns(c,f).(g)STEM-HAADFimageand2.12eV(583nm)forCPBIto2.04eV(605nm)forAg0.035-thecorrespondingelementalmapsofCs,Pb,Br,I,andAg.(h)Self-CPBIwhichsignifies∼0.1eVdecreaseinthebandgap(FigureorganizationoftheQDsintoplateletsafter7and14daysinhexane1c).ThebandgapofCPBI,Ag0.01-CPBI,Ag0.02-CPBI,Ag0.035-medium.CPBI,andAg0.057-CPBIQDsare2.15,2.14,2.13,2.12,and2.09eV,respectively.ThePLspectrainFigure1dalsoshowaFigure2f.TheSTEM-HAADFimageanditscorrespondingconsistentredshiftwithhigherAg+substitutionsandanelementalmappingconfirmtheuniformdistributionoftheadditionalshoulderpeakforAg0.057-CPBIduetothecreationelements,inparticularAgwithoutanyobservablephase39ofmidbandgapstatesandformationofsecondaryAgIphase.segregation(Figure2g).WealsoobservethatirrespectiveofPLQYalsoshowsanenhancementfrom72%forpristineCPBIAgdoping,thenanocubesagedinsidetheparentcolloidalto78%with3.5%Ag+substitution(TableS3).Thetransientsolutioncanself-assembleintotwo-dimensionalstructuresofPLspectraclearlydemonstratetheimprovementincarrierseveralnanometerstomicronsinlateraldimensionwithoutlifetimeofAg-dopedCPBIQDs(Figure1eandTableS3).anychangeincrystalstructure.Figure2hshowssuchaself-TheaveragelifetimeofchargecarriersisthemaximuminorganizationofrepresentativeCPBIQDsafter1and2weeksAg0.035-CPBI(16.9ns)butdecreasessignificantlyto5.1nsinhexanemedium.AFMimagingreflectstheself-organizedwithfurtherincreaseinAgcontent(Ag0.057-CPBI)duetotheQDsafter2weeksofaginghavingasheetdimensionof100−increaseinnonradiativerecombinationinaslightlyimpure150nmandheightof8−9nm(FigureS4).Thisself-constitutionoftheQDsasreflectedfromtheτ1andτ3organizationprocessoftengovernedbyanisotropicdipolarcomponentsinTableS3.internanocubeforceshaslongbeenconsideredtobeextremely3.3.MorphologicalAnalysisoftheQDs.Figure2beneficialforpracticalrealizationofbottom-upfabricationprovidesamicroscopicviewofthepristineanddopedCBPI40−42technologies.QDs,theanalysisofwhichcorroboratestheXRDresults.3.4.DFTAnalysisoftheQDs.TheconsequencesofAgTransmissionelectronmicroscope(TEM)imageofpristinedopingontheelectronicpropertiesofCPBIQDsareCPBIQDsinFigure2ashowsmonodispersenanocubesofcomputationallyelucidatedwiththreecompositionsofsidelength8.1−8.4nm.Thehigh-resolutionTEM(HRTEM)CsPb1−xAgxI1.5Br1.5(x=0,0.125,0.25).ThecalculatedimageinFigure2brevealsthecubicα-phaseofthenanocubesformationenergyoftheoptimizedCPBIcubicunitcelliswherethelatticespacingof0.43nmcorrespondsto(110)−14.32eVwhichimprovesto−15.03eVfortheAg0.125-CPBIreflection,whichisalsothehighestintensitypeakintheXRDstructure,thusemphasizingtheprogressivestabilizationofthepattern(Figure1b).TheselectedareaelectrondiffractioncubiclatticewithAgdoping.Furthermore,inordertoexplore(SAED)patternsupportstheplaneindexingandcubiccrystaltheeffectofAg+dopingontheelectronicandopticalstructure(Figure2c).ThemonodispersityoftheQDsispropertiesofCPBI,thetotalandpartialdensityofstatesretainedafterAg+substitutionattheB-siteoftheperovskite(DOS)wereevaluated(Figure3).Apparently,foreachQDs(Figure2d).Figure2eshowstheHRTEMimageofstructurebothspin-upandspin-downDOSaresimilar,representativeAg-CPBIQDswithaslightlyreducedlatticewhichindicatesthatspinpolarizationeffectsinducedbyAg+0.035spacing∼0.41nmofthe(110)plane,whichisinagreementsubstituentisnegligibleandtheresultantnetspinmagneticwiththehigher2θshiftoftheXRDpeaks.Theunchangedmomentsarezero.Therefore,onlythespin-uptotalandpartialcubiccrystalstructureisreflectedfromtheSAEDpatterninDOSisdisplayedhere.InpristineCPBI,I5sandPb6sorbitals5488https://dx.doi.org/10.1021/acs.jpcc.0c11122J.Phys.Chem.C2021,125,5485−5493

4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure3.TotalandpartialDOSof(a,b)CPBI,(c,d)Ag0.125-CPBI,(e,f)Ag0.25-CPBI.havedominatingcontributionstothevalencebandmaximareductionofbandgapofthesystemandtherebytherequiredwhereasI5pandPb6porbitalscontributemoretothebottomenergyforelectrontransitionsfromAg4dstatestoPb6pstatesideoftheconductionband(Figure3a,b).AsshowninFigureisreduced.TheopticalbandgapofpristineCBPIstructureis3c,e,afterAgsubstitution,thetotalDOSbarelychange.The2.1eVwithscissorcorrectionincludingSOCandTb-mBJdeeplocalizationofAg4dorbitalat−4to0eVshowsthepotential,whereasthebandgapforAg0.125-CPBIstructureisabsenceofanydopantstateswithinthebandgap(Figure3d,f),1.98eV(Figure3a,c).Thebandgapdecrementby∼0.12eVunlikethatobservedinFigure1d.Althoughtheconductionsupportstheobservedredshiftofabsorptionandemissionbandremainsunchanged,thevalencebandshiftstowardhighbands(Figure1c,d).Moreover,theabsorptioncoefficientenergylevelsandasaresultFermienergyentersthevalencespectraofpristineandAg-substitutedstructuresclearlyband,demonstratingthep-typenatureofAg-CPBI.ThisisindemonstratethehigherabsorbanceofAgsubstitutedsystemcontrasttothen-typecharacterofalkaline-earthmetal-dopedascomparedtothepristinestructure(FigureS5).15metalhalideperovskites.3.5.DeviceCharacterization.WhilethesolarcellAlso,thetotalDOSreduceswiththeincreaseinAgfabricationwasdoneinsidetheN2filledglovebox,thedeviceconcentrationfromAg0.125-CPBI(Figure3c)toAg0.25-CBPImeasurementswerecarriedoutinairwitharelativehumidity(Figure3e),wheretheshiftofvalencebandtowardlowenergyof55%andlaboratorytemperatureof25°C.TheAIPSKsolarlevelsisclearlyvisible.ThepartialDOSinFigure3a,cshowthecellswerefabricatedwithCBPIandAg-CPBIQDabsorbershybridizationofI5p,Pb6pandAg4dfrom−4to0eVandawithc-TiO2(thickness∼50nm)asETLandspiro-OMeTADlocalphenomenonleadingtowideningofthevalenceband.asHTL(Figure4a)wherethethicknessisaround350−400ThevalencebandmaximumisnotcontrolledeitherbyI5pornm(Figure4b).WiththeincreaseindopedAgcontentinthePb6pbutratheraffectedbyAg4dorbitalwhichshiftstowardCPBIabsorberlayer,theshort-circuitcurrentdensity(Jsc)andhigherenergylevels.Thiseventuallyleadstoanoverallopen-circuitvoltage(Voc)increaseuptoAg0.035-CPBI5489https://dx.doi.org/10.1021/acs.jpcc.0c11122J.Phys.Chem.C2021,125,5485−5493

5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure4.(a)SchematicrepresentationofatypicalAg-dopedCPBIQDdevice,and(b)cross-sectionalFESEMimageofanactualdevice.Solarcellcharacterizationdataintermsof(c)J−Vcharacteristicplots,(d)Nyquistplots(withequivalentcircuitastheinset),and(e)stabilityplotsforthedevicesmonitoredfor575h(24days)underambientenvironment.Table1.PVParametersoftheDevicesFabricatedwithPristineandAg-DopedCPBIQDAbsorbers2asamplesVoc(V)Jsc(mA/cm)fillfactorefficiency(%)Rs(Ω)Rct(Ω)CPBI1.0011.350.718.07±0.1548.91064Ag0.01-CPBI1.0211.560.738.66±0.2047.7921Ag0.02-CPBI1.0212.110.739.08±0.1643.5709Ag0.035-CPBI1.0412.510.749.67±0.1241.3312Ag0.057-CPBI0.9812.050.698.13±0.2341.5475aAverageestimationwasperformedwithsamplesize5of.composition(Figure4c).With3.5atom%AgsubstitutioninnotonlymodifiesthebandstructurebutalsodecreasestheAg0.035-CPBI,theincreaseinJscisby∼10.22%(from11.35tointrinsicvacanciesintheQDswhichincreasetheJsc.Onthe12.51mA/cm2)andVincreasesfrom1.0to1.04V.contrary,nonradiativepathwaysaremorefavoredwhenaocConsequentlyPCEincreasesfrom8.07±0.15%forCPBItosecondaryphaseappearsandthelatticeAgisincreasedupto9.67±0.12%forAg0.035-CPBIQDs.AhigherAg/Pbratioof5.7atom%.ThisisalsoobservedfromthePLdecayprofile5.7atom%alongwiththeAgIphaseinAg0.057-CPBIQDswhichultimatelyleadstoadecreaseinJsc.TheNyquistplotshoweverhasanegativeimpactonthedeviceperformanceobtainedbytheelectrochemicalimpedance(EIS)measure-(Table1).TheseresultsclearlysuggestthatincorporationofmentsonthedevicesindicatenoticeabledecreaseintheAg+atalowconcentrationof3.5atom%attheB-siteofCPBIsemicirclediameteruptoAg-CPBI,suggestingadecrease0.0355490https://dx.doi.org/10.1021/acs.jpcc.0c11122J.Phys.Chem.C2021,125,5485−5493

6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleinchargetransferresistance(Rct)(Figure4d).TheNyquist■ASSOCIATEDCONTENTplotswerefittedbyaparallelcombinationofcapacitance(C1),*sıSupportingInformationRctwithaseriesresistance(Rs)(insetofFigure4d).RctTheSupportingInformationisavailablefreeofchargeatdecreasesfrom1064ΩforCPBIto312ΩforAg0.035-CPBIhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c11122.andincreasesagainforAg0.057-CPBI(Table1).RsalsoExperimentaltechnique,XRDRietveldplotsanddecreasesfrom48.9ΩforpristineCPBIto41.3ΩforAg0.035-analysis,EDAXanalysis,PLdecayparameters,absorp-CPBI.ThedecreaseinRctattributestotheremovalofsurfacetioncoefficientfromDFTcalculation,solutionstabilitydefectsandtrapstateswhereasthedecreaseinRssuggeststheofQDs(PDF)removalofintrinsicdefects.ThetrendintransientPLspectraisfullyconsistentwiththeEISresultswheretheenhancement■ofcarrierlifetimeisduetothisremovalofdefectstates.AUTHORINFORMATION3.6.PVDeviceStability.TheeffectofAg+substitutioninCorrespondingAuthorCPBIQDshasdirectimplicationsontheQDstabilityaswellSayanBhattacharyya−DepartmentofChemicalSciences,andasthedevicestability.TheabsorptionandemissionspectraofCentreforAdvancedFunctionalMaterials,IndianInstituteofAg-CBPIQDsrecordedatregularintervalsfor20hshowthatScienceEducationandResearch(IISER)Kolkata,Mohanpur741246,India;orcid.org/0000-0001-8074-965X;thestabilityofCPBIQDsisunalteredafterAgdoping(FigureEmail:sayanb@iiserkol.ac.inS6).ThePVdevicesshowexcellentambientstabilityunder55%humidityand25°C(Figure4e).ThestabilitymeasuredAuthorsfor575hintermsofPCE(η%)showlessthan5%dropinDibyenduGhosh−DepartmentofChemicalSciences,andPCEforAg0.035-CPBIincomparisonto∼12%dropinthecaseCentreforAdvancedFunctionalMaterials,IndianInstituteofofpristineCPBIQD-baseddevices.ThisriseinstabilityoftheScienceEducationandResearch(IISER)Kolkata,MohanpurAg-dopedCPBIQDdevicesisquiteencouraging.Becauseof741246,India;orcid.org/0000-0002-8885-1365thepresenceofasecondaryAgIphase,excessAgdopinghasMd.YusufAli−DepartmentofChemicalSciences,andCentrenopositiveimpactonthestabilityandthereforethedropinforAdvancedFunctionalMaterials,IndianInstituteofSciencePCEforAg0.057-CPBIQD-baseddevicescloselymatchestoEducationandResearch(IISER)Kolkata,MohanpurthatofpristineCPBIQDdevices.Ininorganicperovskites,the741246,IndiaoxygenadsorptionissufficientlyreducedinanAg-dopedAnimaGhosh−DepartmentofChemicalSciences,andCentresamplewhichinturnabatestheoveralloxidationandhelpstoforAdvancedFunctionalMaterials,IndianInstituteofincreasethelong-termstabilityofthesolarcell,27whichisScienceEducationandResearch(IISER)Kolkata,ratherauniversaloccurrenceinnanostructuresbeyondQDs.43Mohanpur741246,IndiaArnabMandal−DepartmentofChemicalSciences,andCentreforAdvancedFunctionalMaterials,IndianInstituteof4.CONCLUSIONSScienceEducationandResearch(IISER)Kolkata,Insummary,wehavesuccessfullyincorporatedAg+attheB-Mohanpur741246,IndiasiteoftheCsPbBr1.5I1.5(ABX3)QDswhichhasasignificantCompletecontactinformationisavailableat:impactontheelectronicandopticalpropertiesoftheQDsashttps://pubs.acs.org/10.1021/acs.jpcc.0c11122wellasontheAIPSKQDsolarcells.Ag+couldreplacethePb2+cationsintheQDlatticeuptoaAg/PbdopingratioofAuthorContributions∼4.6atom%.However,anattempttocreateQDswith†D.G.andM.Y.A.contributedequally.maximumpossiblelatticedopingisaccompaniedbytheNotesaccumulationof2.5wt%ofasecondaryphaseofAgIwithinaTheauthorsdeclarenocompetingfinancialinterest.sampletotalAgatom%of5.7whichhasdetrimentalconsequencesontheopticalpropertiesandPVdevice■ACKNOWLEDGMENTSperformance.DFTcalculationsshowanenhancedopticalD.G.andA.G.acknowledgeNationalPostdoctoralFellowshipabsorptioncoefficientandbetterp-typecharacterduetoAg+(NPDF)SchemeunderDepartmentofScienceandTechnol-incorporation.Ag+substitutionhelpsinreducingthebandgapogy(DST),M.Y.A.thanksIISERKolkataandA.M.thanksfrom2.15to2.12eVfromCPBItoAg0.035-CPBIUniversityGrantsCommission(UGC),NewDelhifortheir(CsPb0.965Ag0.035Br1.5I1.5)QDsfacilitatinghigheropticalfellowships.ThefinancialsupportfromScienceandEngineer-absorptionwhereasmidbandgapstatesarecreatedalongingResearchBoard(SERB)undersanctionNo.CRG/2020/withtheformationofAgIphasewithhigherAg+substitution.000084isdulyacknowledged.ThesolarcelldevicesfabricatedwithAg0.035-CPBIQDsshowasignificant∼20%enhancementinPCE.Theenhancementin■REFERENCESPCEcouldbewellunderstoodduetothereductionofsurface(1)Bi,E.;Chen,H.;Xie,F.;Wu,Y.;Chen,W.;Su,Y.;Islam,A.;defectsaswellasintrinsicdefects,decreaseinnonradiativeGrätzel,M.;Yang,X.;Han,L.DiffusionEngineeringofIonsandrecombinationleadingtoanincreaseincarrierlifetime,andChargeCarriersforStableEfficientPerovskiteSolarCells.Nat.increaseinchargetransferfromtheAIPSKQDabsorberlayerCommun.2017,8,15330.toETLandHTL.ThePVdevicestabilityalsoshowsvery(2)Xing,G.;Mathews,N.;Sun,S.;Lim,S.S.;Lam,Y.M.;Gratzel,M.;Mhaisalkar,S.;Sum,T.C.Long-RangeBalancedElectron-andpromisinglong-termoperationfor575h(24days).ThisworkHole-TransportLengthsinOrganic-InorganicCH3NH3PbI3.Sciencedemonstratesthetremendousbenefitofasuitablealiovalent2013,342,344−347.dopinginthemetal-halideperovskiteQDsfortheirenhanced(3)Yang,Z.;Surrente,A.;Galkowski,K.;Bruyant,N.;Maude,D.K.;andstablePVperformance.Haghighirad,A.A.;Snaith,H.J.;Plochocka,P.;Nicholas,R.J.5491https://dx.doi.org/10.1021/acs.jpcc.0c11122J.Phys.Chem.C2021,125,5485−5493

7TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleUnravelingtheExcitonBindingEnergyandtheDielectricConstantinTemperature-ProcessedCsPbI2BrPerovskiteSolarCells.ACSEnergySingle-CrystalMethylammoniumLeadTriiodidePerovskite.J.Phys.Lett.2017,2,2319−2325.Chem.Lett.2017,8,1851−1855.(20)Liang,J.;Zhao,P.;Wang,C.;Wang,Y.;Hu,Y.;Zhu,G.;Ma,(4)Ghosh,A.;Chaudhary,D.K.;Mandal,A.;Prodhan,S.;Chauhan,L.;Liu,J.;Jin,Z.CsPb0.9Sn0.1IBr2BasedAll-InorganicPerovskiteK.K.;Vihari,S.;Gupta,G.;Datta,P.K.;Bhattacharyya,S.Core/shellSolarCellswithExceptionalEfficiencyandStability.J.Am.Chem.Soc.NanocrystalTailoredCarrierDynamicsinHysteresis-LessPerovskite2017,139,14009−14012.SolarCellwith∼20%EfficiencyandLongOperationalStability.J.(21)Lin,C.C.;Xu,K.Y.;Wang,D.;Meijerink,A.LuminescentPhys.Chem.Lett.2020,11,591−600.Manganese-DopedCsPbCl3PerovskiteQuantumDots.Sci.Rep.(5)NRELEfficiencyChart.2020.https://www.nrel.gov/pv/cell-2017,7,45906.efficiency.html(accessedMarch5,2021).(22)Tang,Z.;Bessho,T.;Awai,F.;Kinoshita,T.;Maitani,M.M.;(6)Ma,F.;Li,J.;Li,W.;Lin,N.;Wang,L.;Qiao,J.Stableα/δPhaseJono,R.;Murakami,T.N.;Wang,H.;Kubo,T.;Uchida,S.;etal.JunctionofFormamidiniumLeadIodidePerovskitesforEnhancedHysteresis-FreePerovskiteSolarCellsMadeofPotassium-Dopednear-InfraredEmission.Chem.Sci.2017,8,800−805.OrganometalHalidePerovskite.Sci.Rep.2017,7,12183.(7)Salado,M.;Contreras-Bernal,L.;Calio,L.;Todinova,A.;López-̀(23)Zhou,D.;Liu,D.;Pan,G.;Chen,X.;Li,D.;Xu,W.;Bai,X.;Santos,C.;Ahmad,S.;Borras,A.;Idígoras,J.;Anta,J.A.ImpactofSong,H.CeriumandYtterbiumCodopedHalidePerovskiteMoistureonEfficiency-DeterminingElectronicProcessesinPerov-QuantumDots:ANovelandEfficientDownconverterforImprovingskiteSolarCells.J.Mater.Chem.A2017,5,10917−10927.thePerformanceofSiliconSolarCells.Adv.Mater.2017,29,(8)Grancini,G.;D’Innocenzo,V.;Dohner,E.R.;Martino,N.;1704149.SrimathKandada,A.R.;Mosconi,E.;DeAngelis,F.;Karunadasa,H.(24)Wang,J.T.-W.;Wang,Z.;Pathak,S.;Zhang,W.;deQuilettes,I.;Hoke,E.T.;Petrozza,A.CH3NH3PbI3PerovskiteSingleCrystals:D.W.;Wisnivesky-Rocca-Rivarola,F.;Huang,J.;Nayak,P.K.;Patel,SurfacePhotophysicsandTheirInteractionwiththeEnvironment.J.B.;MohdYusof,H.A.;etal.EfficientPerovskiteSolarCellsbyChem.Sci.2015,6,7305−7310.MetalIonDoping.EnergyEnviron.Sci.2016,9,2892−2901.(9)Lu,C.-H.;Biesold-McGee,G.V.;Liu,Y.;Kang,Z.;Lin,Z.(25)Chen,Q.;Chen,L.;Ye,F.;Zhao,T.;Tang,F.;Rajagopal,A.;DopingandionsubstitutionincolloidalmetalhalideperovskiteJiang,Z.;Jiang,S.;Jen,A.K.Y.;Xie,Y.;etal.Ag-Incorporatednanocrystals.Chem.Soc.Rev.2020,49,4953−5007.Organic-InorganicPerovskiteFilmsandPlanarHeterojunctionSolar(10)Akbulatov,A.F.;Luchkin,S.Y.;Frolova,L.A.;Dremova,N.Cells.NanoLett.2017,17,3231−3237.N.;Gerasimov,K.L.;Zhidkov,I.S.;Anokhin,D.V.;Kurmaev,E.Z.;(26)Zhou,S.;Ma,Y.;Zhou,G.;Xu,X.;Qin,M.;Li,Y.;Hsu,Y.-J.;Stevenson,K.J.;Troshin,P.A.ProbingtheIntrinsicThermalandHu,H.;Li,G.;Zhao,N.;etal.Ag-DopedHalidePerovskitePhotochemicalStabilityofHybridandInorganicLeadHalideNanocrystalsforTunableBandStructureandEfficientChargePerovskites.J.Phys.Chem.Lett.2017,8,1211−1218.Transport.ACSEnergyLett.2019,4,534−541.(11)Liu,F.;Zhang,Y.;Ding,C.;Kobayashi,S.;Izuishi,T.;(27)Park,C.;Choi,J.;Min,J.;Cho,K.SuppressionofOxidativeNakazawa,N.;Toyoda,T.;Ohta,T.;Hayase,S.;Minemoto,T.;etal.DegradationofTin-LeadHybridOrganometalHalidePerovskiteHighlyLuminescentPhase-StableCsPbI3PerovskiteQuantumDotsSolarCellsbyAgDoping.ACSEnergyLett.2020,5,3285−3294.AchievingNear100%AbsolutePhotoluminescenceQuantumYield.(28)Shahbazi,S.;Tsai,C.M.;Narra,S.;Wang,C.Y.;Shiu,H.S.;ACSNano2017,11,10373−10383.Afshar,S.;Taghavinia,N.;Diau,E.W.G.AgDopingofOrganometal(12)Swarnkar,A.;Marshall,A.R.;Sanehira,E.M.;Chernomordik,LeadHalidePerovskites:MorphologyModificationandP-TypeB.D.;Moore,D.T.;Christians,J.A.;Chakrabarti,T.;Luther,J.M.Character.J.Phys.Chem.C2017,121,3673−3679.QuantumDot-inducedPhaseStabilizationofα-CsPbI3Perovskitefor(29)Halder,G.;Bhattacharyya,S.PlightofMn-dopinginColloidalHigh-EfficiencyPhotovoltaics.Science2016,354,92−95.CdSQuantumDotstoBoosttheEfficiencyofSolarCells.J.Phys.(13)Liu,C.;Li,W.;Zhang,C.;Ma,Y.;Fan,J.;Mai,Y.All-InorganicChem.C2015,119,13404−13412.CsPbI2BrPerovskiteSolarCellswithHighEfficiencyExceeding13%.(30)Bhattacharyya,S.;Zitoun,D.;Estrin,Y.;Moshe,O.;Rich,D.J.Am.Chem.Soc.2018,140,3825−3828.H.;Gedanken,A.AOne-step,Template-freeSynthesis,Character-(14)Ghosh,D.;Chaudhary,D.K.;Ali,Md.Y.;Chauhan,K.K.;ization,OpticalandMagneticPropertiesofZn1‑xMnxTeNanosheets.Prodhan,S.;Bhattacharya,S.;Ghosh,B.;Datta,P.K.;Ray,S.C.;Chem.Mater.2009,21,326−335.Bhattacharyya,S.All-InorganicQuantumDotAssistedEnhanced(31)Halder,G.;Bhattacharyya,S.Zinc-diffusedSilverIndiumChargeExtractionAcrosstheInterfacesofBulkOrgano-HalideSelenideQuantumDotSensitizedSolarCellswithEnhancedPerovskiteforEfficientandStablePin-holeFreePerovskiteSolarPhotoconversionEfficiency.J.Mater.Chem.A2017,5,11746−11755.Cells.Chem.Sci.2019,10,9530−9541.(32)Bera,S.;Ghosh,D.;Dutta,A.;Bhattacharyya,S.;Chakraborty,(15)Phung,N.;Felix,R.;Meggiolaro,D.;Al-Ashouri,A.;SousaeS.;Pradhan,N.LimitingHeterovalentB-siteDopinginCsPbI3Silva,G.;Hartmann,C.;Hidalgo,J.;Kobler,H.;Mosconi,E.;Lai,B.;Nanocrystals:ThePhaseandOpticalStability.ACSEnergyLett.Gunder,R.;Li,M.;Wang,K.-L.;Wang,Z.-K.;Nie,K.;Handick,E.;2019,4,1364−1369.Wilks,R.G.;Marquez,J.A.;Rech,B.;Unold,T.;Correa-Baena,J.-P.;(33)Ghosh,D.;Ali,M.Y.;Chaudhary,D.K.;Bhattacharyya,S.Albrecht,S.;DeAngelis,F.;Bar,M.;Abate,A.TheDopingDependenceofHalideCompositionontheStabilityofHighlyMechanismofHalidePerovskiteUnveiledbyAlkalineEarthMetals.J.EfficientAll-InorganicCesiumLeadHalidePerovskiteQuantumDotAm.Chem.Soc.2020,142,2364−2374.SolarCells.Sol.EnergyMater.Sol.Cells2018,185,28−35.(16)Zhou,Y.;Chen,J.;Bakr,O.M.;Sun,H.-T.Metal-DopedLead(34)Blaha,P.;Schwarz,K.;Madsen,G.K.H.;Kvasnicka,D.;Luitz,HalidePerovskites:Synthesis,Properties,andOptoelectronicProper-J.;Laskowski,R.;Tran,F.;Marks,L.D.WIEN2k,AnAugmentedPlaneties.Chem.Mater.2018,30,6589−6613.Wave+LocalOrbitalsProgramforCalculatingCrystalProperties;(17)Chan,S.-H.;Wu,M.-C.;Lee,K.-M.;Chen,W.-C.;Lin,T.-H.;KarlheinzSchwarz,Techn.Universitat:Wien,Austria,2018.̈Su,W.-F.EnhancingPerovskiteSolarCellPerformanceandStability(35)Perdew,J.P.;Burke,K.;Ernzerhof,M.GeneralizedGradientbyDopingBariuminMethylammoniumLeadHalide.J.Mater.Chem.ApproximationMadeSimple.Phys.Rev.Lett.1996,77,3865.A2017,5,18044−18052.(36)Koller,D.;Tran,F.;Blaha,P.ImprovingthemodifiedBecke-(18)Dunlap-Shohl,W.A.;Younts,R.;Gautam,B.;Gundogdu,K.;Johnsonexchangepotential.Phys.Rev.B:Condens.MatterMater.Phys.Mitzi,D.B.EffectsofCdDiffusionandDopinginHigh-Performance2012,85,155109.PerovskiteSolarCellsUsingCdSasElectronTransportLayer.J.Phys.(37)Mandal,A.;Ghosh,A.;Senanayak,S.P.;Friend,R.H.;Chem.C2016,120,16437−16445.Bhattacharyya,S.Thickness-attunedCsPbBr3Nanosheetswith(19)Lau,C.F.J.;Zhang,M.;Deng,X.;Zheng,J.;Bing,J.;Ma,Q.;Enhancedp-typeFieldEffectMobility.J.Phys.Chem.Lett.2021,Kim,J.;Hu,L.;Green,M.A.;Huang,S.;etal.Strontium-DopedLow-12,1560−1566.5492https://dx.doi.org/10.1021/acs.jpcc.0c11122J.Phys.Chem.C2021,125,5485−5493

8TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(38)Chaudhary,D.K.;Ghosh,A.;Ali,Y.M.;Bhattacharyya,S.Chargetransportbetweencoaxialpolymernanorodsandgraftedallinorganicperovskitenanocrystalsforhybridorganicsolarcellswithenhancedphotoconversionefficiency.J.Phys.Chem.C2020,124,246−255.(39)Sanni,A.M.;Lavan,S.N.;Avramenko,A.;Rabuffetti,F.A.;Suescun,L.;Rury,A.S.Room-TemperatureBroadbandLightEmissionfromHybridLeadIodidePerovskite-LikeQuantumWells:TerahertzSpectroscopicInvestigationofMetastableDefects.J.Phys.Chem.Lett.2019,10,1653−1662.(40)Tang,Z.;Zhang,Z.;Wang,Y.;Glotzer,S.C.;Kotov,N.A.Self-AssemblyofCdTeNanocrystalsintoFree-FloatingSheets.Science2006,314,274−278.(41)Vybornyi,O.;Yakunin,S.;Kovalenko,M.V.Polar-SolventFreeColloidalSynthesisofHighlyLuminescentAlkylammoniumLeadHalidePerovskiteNanocrystals.Nanoscale2016,8,6278−6283.(42)Peng,L.;Dutta,A.;Xie,R.;Yang,W.;Pradhan,N.Dot-Wire-Platelet-Cube:StepGrowthandStructuralTransformationsinCsPbBr3PerovskiteNanocrystals.ACSEnergyLett.2018,3,2014−2020.(43)Majee,R.;Kumar,A.;Das,T.;Chakraborty,S.;Bhattacharyya,S.TweakingNickelwithMinimalSilverinaHeterogeneousAlloyofDecahedralGeometrytoDeliverPlatinum-likeHydrogenEvolutionActivity.Angew.Chem.,Int.Ed.2020,59,2881−2889.5493https://dx.doi.org/10.1021/acs.jpcc.0c11122J.Phys.Chem.C2021,125,5485−5493

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭