Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown

Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown

ID:81816513

大小:11.02 MB

页数:9页

时间:2023-07-20

上传者:U-14522
Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown_第1页
Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown_第2页
Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown_第3页
Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown_第4页
Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown_第5页
Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown_第6页
Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown_第7页
Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown_第8页
Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown_第9页
资源描述:

《Colorful Perovskite Solar Cells Progress, Strategies, and Potentials - Wang et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLPerspectiveColorfulPerovskiteSolarCells:Progress,Strategies,andPotentialsHaoWang,JiaLi,HerlinaArianitaDewi,NripanMathews,SubodhMhaisalkar,andAnnalisaBruno*CiteThis:J.Phys.Chem.Lett.2021,12,1321−1329ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Inthepastfewyears,alargevarietyofperovskitesolarcells(PSCs)withvividandwell-distinguishedcolorhueshavebeendemonstrated.InthisPerspective,wecomparedifferentstrategiesemployedtorealizecolorfulPSCsbothinopaqueandsemitransparentdesigns.TheapproachesusedtomodulatethePSCs’colorfulappearancecanbedividedintotwomaincategories:thefirstonebasedonthemodificationsoftheirinternallayers(i.e.,absorber,electron-and/orhole-transportinglayers,andelectrodes),whilethesecondisbasedontheadditionofexternalcoloredornanostructuredfilmstothestandardPSCs.TheadvantagesandbottlenecksofeachstrategyarediscussedintermsofPSCs’colortunability,transparency,photovoltaicperformances,fabricationprocessesfeasibility,andscalability,inviewofsuitableapplicationsinanurbancontextforbuilding-integratedphotovoltaics.6olarcell(SC)integrationintourbanspacesisbeneficialtofrom3.8%to25.5%overadecade.PSCs,fabricatedbyS6−89−11bothenlargetheexploitablelandandmaximizethesolutionandlow-temperaturevacuumprocesses,are1electricityproductionclosetothepointsofdemand.High-compatiblewithflexiblesubstrates.ConventionalPSCsareperformingSCswithkeyfeaturesofsemitransparencyandopaque,althoughmanysemitransparentPSCs(ST-PSCs)havebroadcolortunabilityaredesirable.Theconventionalrigidandbeendemonstrated.12−14opaquecrystallinesiliconmodulesareintegratedonbuildingThemainrequirementsforefficientPSCintegrationinanroofsprovidinghighpowerconversionefficiencies(PCEs)andurbancontextincludethepossibilityofcolortunabilitylong-termstability,buttheiraestheticsandtheirtransparencymaintaininghighPCEs,thesimplicityandscalabilityoftherepresentthemainlimitationsforwiderintegrationinthecityfabricationprocesses,andtransparency(Scheme1).landscape.Indeed,theheavyandopaqueSi-SCscannotbePSCs’performancesandtheiraestheticpropertieshavebeenintegratedintowindowsorconformtocurvedsurfaces.ThetunedbycontrollingeitherthePSCs’internalinter-fewcoloredSimodulesdemonstratedreportedasignificativelayers1,11,15−23oraddingexternallayers24−29(Table1).InDownloadedviaBUTLERUNIVonMay15,2021at20:52:41(UTC).2,34PCEdrop.Lighterphotovoltaic(PV)technologieshavethisPerspective,wereviewthesedifferentstrategies.Wewill5emergedasalternativestoSi-SCs.Organicanddye-sensitizeddiscussthedesignprinciplestogetherwiththeadvantagesandSCsofferawiderangeofcolorandhightransparencyonrigidbottlenecksoftheseapproachesforurbanintegration,andweandflexiblesubstrates,butthelowPCEsoverlargeareasandSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.5willprovidedesignpropositionsforcolorfulPSCs.poorstabilitylimittheirapplications.ThevarietyofcolorsachievableinPSCsisimportantforarchitecturalelements’design.TheperceptionofcolorsisThemainPSCs’requirementsforcreatedbymodulatingeitherthelighttransmittance(Schemetheirproficientintegrationin2A)orreflectance(Scheme2B)throughthePSCs.TheurbancontextsincludewidedesignsfortuningthePSCs’colorsbothintransmissionandreflectioncanbebasedoneither(i)internalor(ii)externalcolortunability,highPCEs,sim-modificationsofthePSCsstructure(Scheme2C).InternalplicityandscalabilityofthemodificationsincludetheapproachesbasedonthevariationoffabricationprocessesandhighthePSCsinternallayersastheperovskitelayer,theelectronopticaltransparency.Received:November19,2020Thehighlyefficient,cost-effective,andversatilemetalhalideAccepted:January15,2021perovskitesolarcells(PSCs)representapromisingPVPublished:January27,2021technologywiththepotentialtobeimplementedinurbansettings.Theypresentexcellentbandgaptunability(1.2−2.3eV)andhighabsorption.ThePSCs’PCEshaveskyrocketed©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c034451321J.Phys.Chem.Lett.2021,12,1321−1329

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLPerspectiveaScheme1.KeyPropertiesofColorfulPerovskiteSolarCellsScheme2.ColorfulPSCSchematicStructuresandDesignaforIntegrationinUrbanContextsa(i)Widecolortunability,(ii)highpowerconversionefficiency,(iii)easyandlow-temperatureprocessing,(iv)scalability,and(v)transparencywhenrequiredforspecificapplications.transportlayer(ETL),holetransportlayers(HTL),ortheelectrodes.Incontrast,externalmodificationstrategiesmodifythePSCs’colorsbyaddingcoatingsordielectricmirrors.aThecolorfulappearanceisgeneratedbymodulatingtheincidentThereisanunavoidabletrade-offbetweentheaestheticlightin(A)transmissionmodeand(B)reflectionmode.(C)Designpropertiesandlight-harvestinginPSCs.approachestocreatecoloredPSCs.AstraightforwardwaytotunethePSCs’colorsisbymodifyingtheperovskitecoloreitherbycompositional33−3530engineeringorthroughtuningthefilmthickness.Bothdoesnotrequireadditionalprocessing,butthecolortunabilityPb-basedandlead-freeperovskitehavesimilarcolorpropertiesislimitedandthedifferentcolorsachievedifferentPCEs.asthecolorgenerationdependsonthebandgapratherthanUpamaetal.fabricatedPSCsintheshadesofbrownandPCEs36elementalcomposition.Yuanetal.demonstratedPSCsfrom3.5%to9.23%,forperovskitethicknessesbetween40and30exhibitingcolorsfromdarktolightredtuningthebandgapof100nm.Jungetal.showedPSCsofdifferentgradesofbrownMAPbI3−xBrx,yieldingPCEsrangingfrom14.15%toandPCEsbetween7.53%and10.73%employing140−240nm153110.03%.thickCH3NH3PbI3film(Figure1A).SimulationsbyQuirozPSCswithyellowtoredcolorshavebeendemonstratedetal.alsopredictedthedependenceofthePSCcolorsonthe30,3137throughtuningperovskitethickness.Thissimplemethodperovskitethickness.aTable1.ColorfulOpaquePSCandST-PSCCharacteristicsPCE(%)layermodifiedmethodadvantagesconstraintsopaqueST3031perovskiteperovskitebandgaporsimplefabrication;scalablelimitedcolortunability;thinabsorber3.5−9.23,7.53−10.73thicknesstuningprocessrequired;limitedPCE23perovskitemorphologydistinctivevividcolorfulcolorsarenotreproducible;strictprocess12.2%controlpatterncontrolrequirements17ETL/HTLpost-tintingsimplefabrication;scalablecolorsdependondyeavailability6.516nanostructureswidecolortunabilitysophisticateddesign;nanostructure19.6%fabrication1photoniccrystalwidecolortunabilitysophisticateddesign4.5−8.8%,3216.94%1819electrodemicrocavityincorporationwidecolortunabilityrequiresultrathinabsorber;limitedPCE;3.18−3.86,5.7−7.2,20sophisticateddesign10.47−11.182111electrodethicknesstuningwidecolortunability;11.6−13.8,15.1−16.8,22simplefabrication10.6−13.3262425externalmicrocavitiestuningwidecolortunability;requireultrathinabsorber;limitedPCE;18−18.9%3−3.610.2layersfabrication;scalablesophisticateddesign2728colorfulcoatingadditionsimplefabrication;scalablecolorsdependonpigment/inkavailability9.4%N.A.29plasmonicnanogratingwidecolortunabilitysophisticateddesign7.72−10.12additionaMethodsusedtotunethecolorfulappearanceandtheirrelativeadvantagesandconstraintstogetherwiththePCEs.1322https://dx.doi.org/10.1021/acs.jpclett.0c03445J.Phys.Chem.Lett.2021,12,1321−1329

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLPerspectiveFigure1.ColoredPSCsobtainedbymodulatingtheperovskiteactivelayer.(A)Left:DevicestructureofST-PSCsconsistingofglass/FTO/PEDOTorCuSCN/CH3NH3PbI3/PC61BM/Bis-C60/Ag.Middle:Devicephotographswithperovskitelayerofdifferentthickness.Right:PSCcolorcoordinatesonCIE1931chromaticitydiagram.Reprintedfromref31.Copyright2015Wiley-VCHVerlagGmbH&Co.KGaA.(B)Left:DevicestructureschematicofthecoloredopaquePSCs:consistingofglass/ITO/PTAA/perovskite/C60/BCP/Al.Middle:Microscopyimagesoftheas-preparedperovskitefilmspreparedatsubstratetemperature160,135,and100°C.Right:Photographsoftheperovskitefilm(left)andthecompletePSC(right).Reprintedfromref23.Copyright2015TheRoyalSocietyofChemistry.TheperovskitemorphologyalsoaffectsthePSCs’colors.coloredPSCs.Zhangetal.demonstratedopaquePSCswithEperonetal.demonstratedneutral-coloredPSCswithdistinctivecolorsbyincorporatingaporousphotoniccrystal17,38microstructured“islands”intheperovskite.Dengetal.(TiO2−SiO2nanoparticlesalternatedlayers)withinthefabricatedPSCswithvividnonhomogeneouscolorsbyformingphotoactivelayer,Figure2C.Thecolors,generatedinacoffee-ring-likephotonicstructures(bycontrollingtheperov-reflectionmode,covertheentirevisibleregion.ThePSCs1skitemorphology)duringdoctor-bladedeposition(FigureachievedPCEsof4.5%fortheredand8.8%fortheblue.The231B).Thedoctor-bladedcolorfulPSCsareeasilyscalable.keyadvantagesofthisapproacharethehighreproducibilityThealterationofETLand/orHTLbytintingorthicknessandthewidecolortunabilityachievablewithhuesthatarevariationornanostructuresincorporationisanotherinternalunlikelytobleachorfadewithtime.Themainlimitationofthemodificationapproach.photoniccrystaldesignisrelatedtothefabricationcomplexityEperonetal.demonstrated“rose-tinted”PSCsbyincorpo-aseachSiO2andTiO2layerneedstobewellcontrolledtonotratingdyeintheHTL,withoutaffectingthePCE(Figurecompromisethehinderingofchargetransportorthecolor172A).Thisisapromisingmethodforgoodreproducibilityandgeneration.Moreover,thetotalPSCfabricationprocesstimescalabilitywithoutsacrificingthePCEs.Thecolortunabilitybecomessignificantlylonger,andthespin-coatingpreparationconstraintsaredefinedbythedye’scolors.Wangetal.reportedprocessofthephotoniccrystalsmayrestrictthePSCs’opticalsimulationsforn-i-pPSCsshowingthatdistinctivescalability.22colorscanbeobtainedbyvaryingtheHTLthickness.Liuetal.designedanETLwithtwo-dimensionalphotonicDengetal.demonstratedcolorfulPSCsbyincorporatingincrystalstructuresconsistingofanopalstructuredSnO2−TiO2theETLdoublediffractiongratings,whichincludesa(IOST)compositefabricatedusingatemplate-assistedspin-nanostructuredTiO2scaffoldandastructuredPDMSfilmascoatingmethodbasedon550nmpolystyrene(PS)micro-39antireflectionlayer(Figure2B).Thisapproachgeneratedvividspheresasthepatternedmedium.TheIOSTlayerscoated16colorsandenhancedthePCEsfrom18.2%to19.6%.Indeed,withaperovskitefilmexhibitdifferentcolorsatvariousviewingthestructuredETLdidnotaffectthePSCs’performance,whileangles.ThePSCsachived16.8%PCE;however,thefinalthetexturedPDMSenhancedthelight-harvesting.AsthecolorcolorsgeneratedcanbeaffectedbythepresenceoftheHTLformationisinreflectivemode,thisapproachissuitablealsoandtopelectrode.Wangetal.nanostructuredtheETLlayersforST-PSCs.ThebottleneckisthereproducibilityandwithTiO2nanobowl(NB)arraysfabricatedbylithography32scalabilityofthepatternedETLfilmfabricatedbytheusingPSspheresasthepatternedmedium.Theperovskiteimprintingprocess.ThedesignofthediffractiongratinginfiltratedintheTiO2NBarrayshowedvividcolorsdependentwithintheETLisaneffectivewaytomodulatethecolorsofontheviewingangles.ThecolorfulPSCsreachedPCEofPSCs.16.94%.TheincorporationofphotoniccrystalsinETLhasalsobeenBesidesthenanostructuresandphotoniccrystalsdiscusseddemonstratedtobeanefficientstrategytocreatebright-here,othernanophotonicsdesignscouldalsobeexploredto1323https://dx.doi.org/10.1021/acs.jpclett.0c03445J.Phys.Chem.Lett.2021,12,1321−1329

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLPerspectiveFigure2.ColoredperovskitesolarcellswereobtainedbymodulatingtheETL/HTLlayers.(A)Left:ST-PSCsdevicestructureconsistingofglass/FTO/c-TiO2/perovskiteislands/Spiro-OMeTAD/thinAu.Middle:PhotographsofST-PSCswithout(left)andwith(right)D102dyeincorporatedintheSpiro-OMeTADlayer.Right:J−Vcurvesofthecolor-tintedST-PSCandcontrolPSCs.Reprintedfromref17.Copyright2013AmericanChemicalSociety(ACS).(B)Left:Fabricationprocessofgrating-patternedPDMSandtheTiO2scaffold,anddevicestructureofPSCswithflat,grating-TiO2,gratingTiO2+gratingPDMSconfiguration.Middle:PSCsJ−Vcurves.Right:PhotographsofthecolorfulPSCs(flatTiO2andgratingTiO2+gratingPDMS).Reprintedfromref16.Copyright2019Wiley-VCHVerlagGmbH&Co.KGaA.(C)Left:Devicestructureandphotographsofthecolorfulphotonic-crystal(PC)-basedopaquePSCconsistingofglass/FTO/TiO2−SiO2NPsalternatedlayers/CH3NH3PbI3−xClx/Spiro-OMeTAD/Au.Middle:Experimental(solidlines)andtheoretical(dashedlines)reflectanceofthecolorfulPSCs.Right:PSCcolorsCIE1931Chromaticityspace.Reprintedfromref1.Copyright2015ACS.formcolorfulPSCs.ThesimplicityandscalabilityofthewheretheopticaldielectricspacerWO3istunedtocreatenanophotonicstructure’sfabricationproceduresareimportantdifferentcolors.Thethinperovskiteabsorberemployed(∼8018factorsfortheirpracticalimplementation.nm)leadstolowlightabsorptionlimitingthePCEsto∼3%.Luetal.employedAg/ITO/AgmicrocavityastransparentThesimplicityandscalabilityofelectrodestocreatered,orange,yellow,green,andblueST-PSCs,bytuningtheITOopticalspacerthickness(Figure3A).thenanophotonicstructure’sThePSCsachievedrelativelylowPCEsrangingfrom5.7%tofabricationproceduresareim-197.2%becauseofthelimitedlightabsorptionintheultrathinportantfactorsfortheirpracticalperovskite.Leeetal.developedefficientmulticoloredST-PSCsimplementation.basedonphase-compensatedmicrocavities,Ag/SiO2/ZnS/Ag/ZnS,showinghighangularincidencetolerance.ThePSCsefficientlyutilizemostofthevisiblelight,throughimpedanceAnotherinternalmodificationapproachtotunethecolorsofmatching,providinghighlightharvesting.Witha∼100nm-thePSCsisbasedondesigningtransparentelectrodestothickperovskiteabsorber,PCEabove10%wasachievedfor20modulatethetransmissionorreflectionspectralpeaks.red,green,andblueST-PSCs.Recently,afewworkshaveshownthatawiderangeofcolorTheincorporationofopticalmicrocavitiesinthetransparent11,21,22electroderequiresultrathinperovskite(<100nm)absorber,huescanbeachievedwithoutsacrificingthePCEs.Leeetal.demonstratedthattheincorporationofopticalwhichcompromisesthePCE.microcavitiesinthetransparentelectrodesgeneratesdistinctiveTuningthetransparentelectrodethicknessisasimpleandtransmissivecolorsbycreatinglightinterferenceatspecificeffectiveapproachtocreatecolorswithoutrequiringextra18wavelengths.Thetransparentelectrodeisametal−fabrication.ThePSCs’colortuninghasbeendemonstratedindielectric−metalstructure(PTCBI/Ag/WO3/PTCBI/Ag)areflectivemode,whichhasnoconstraintsontheperovskite1324https://dx.doi.org/10.1021/acs.jpclett.0c03445J.Phys.Chem.Lett.2021,12,1321−1329

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLPerspectiveFigure3.ColoredPSCsobtainedbymodulatingthesemitransparentelectrodes.(A)Left:ColoredST-PSCconsistingofglass/ITO/PEDOT:PSS/perovskite(75nm)/PCBM/thinAg/ITO/thinAg.ThemicrocavityiscreatedbysandwichingtheITObetweentwothinmetallicAglayers.Middle:ST-PSCsSimulated(dashedlines)andexperimental(solidlines)transmittancecurves.Right:PhotographsofthecolorfulPSCs.Reprintedfromref19.Copyright2016ACS.(B)Left:DevicestructureofcoloredST-PSC.Middle:Photographsofacoloredschematic“H”assembledbycolorfulPSCs.Right:PSCcolorcoordinatesintheCIEdiagram.Reprintedfromref21.Copyright2016ACS.(C)Left:ColorfulST-PSC(glass/FTO/SnO2/PCBM/CH3NH3PbI3/Spiro-OMeTAD/Ag/ITO).Middle:PCEsandphotographsofthecoloredST-PSCsasafunctionoftheITOthicknesses.Right:PSCcolorcoordinatesintheCIEdiagram.Reprintedfromref11.Copyright2020ElsevierInc.(D)Left:SchematicofcolorfulST-PSC.Middle:PhotographsofcolorfulPSCwithdifferentITOelectrodethickness.Right:PSCcolorcoordinatesintheCIEdiagram.Reprintedfromref22.Copyright2019ACS.thickness.Jiangetal.reportedcolorfulST-PSCbyemployingLietal.reportedST-PSCswithdistinctivecolorsbytuningtransfer-printedPEDOT:PSSasatransparentelectrodethethicknessofthesputteredITOandPCEsrangingfrom11(Figure3B).Transparencyandthicknessweretunedto15%to16.8%(Figure3C).ThesecolorfulST-PSCsshowedgoodscalabilityoverlargeareasbyemployingcoevaporatedengineertheopticalinterference.DistinctivecolorsandPCEsperovskite,andcoloredSTmini-modules(14cm2)achieved21between11.6%and13.8%wereobtained.Themain11PCEsabove11%.limitationofthismethodistheST-PSCscalability,astheWangetal.reportedST-PSCswiththehighlytransparenttransfer-printingmethodisnoteasilytransferableoverlargeCuSCNasHTLinwhichtheITOthicknesswastunedto22areas.achievecolors(Figure3D).Distinctivevividcolorswere1325https://dx.doi.org/10.1021/acs.jpclett.0c03445J.Phys.Chem.Lett.2021,12,1321−1329

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLPerspectiveFigure4.ColoredPSCsobtainedbytheadditionofexternallayers.(A)Left:ST-PSCschematicconsistingofglass/ITO/PEDOT:PSS/perovskite/PCBM/ZnO/AgNWwithadielectricmirrorattherearside.Middle:PSCsbackandfrontimageswitha∼40nmthickperovskiteasabsorberlayer,fourbaredielectricmirrors.Right:ChromaticityofapristinePSCs.Reprintedfromref24.Copyright2016ACS.(B)Left:Diagramofthenarrow-bandwidthreflectivefilters(NBRF)formedbyperiodicstackingofhigh-refractive-index(TiO2)andlow-refractive-index(SiO2)layers.Middle:ReflectivespectraandimagesofthefabricatedRGB-NBRFs.Right:ColorcoordinatesoffabricatedandsimulatedRGB-NBRFsinCIEcolorcoordinatediagram.Reprintedfromref26.Copyright2019ACS.(C)Left:Schematicofaninkjet-printedluminescentdown-shifting(LDS)layercoatedonthesubstratesideofaPSC.Middle:TransmittancespectraofLDSlayers.Right:ColorcoordinatesoftheLDS,perovskitelayers,andcombinationofLDSandperovskiteinCIE-diagram.Inset:PhotographsofPSC.Reprintedfromref27.Copyright2018ACS.(D)Left:PSCschematicwithatopplasmoniccolorfilter.Middle:J−VcharacteristicsofthePSCsintegratedwiththeRGBplasmonicfilters.Right:ColoredPSCsincidentphoton-to-currentefficiency(IPCE)spectra.Reprintedfromref29.Copyright2017TheAuthors(openaccess).theoreticallypredictedandexperimentallydemonstratedbyelectrodecombinationenabledtheST-PSCstoachieveatuningtheITOthickness.ThehighlytransparentHTL/bifacialfactorof∼93.7%andbifacialPCEof22.1%.1326https://dx.doi.org/10.1021/acs.jpclett.0c03445J.Phys.Chem.Lett.2021,12,1321−1329

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLPerspectiveAsanexternalmodification,theadditionofdielectricmirrorsofcurvysurfaces,flexible,colorfulPSCsarerequired,andtheorcolorfulcoatingsinPSCsisastraightforwardmethodforfabricationprocessesbecomecritical.Besidesthesespecificcreatingcolors.However,itmayaffectthelightabsorptionandrequirements,thePSCs’scalability,reproducibility,andthePVperformance.stabilityareimportanttomakePSCscost-effectiveandsuitableQuirozetal.demonstratedthatmicrocavityintegrationinforurbanintegration.25ST-PSCimprovedlightharvesting.Thedoctor-bladedInconclusion,effectiveapproachestorealizeopaqueandSTdielectricmirrorswereplacedunderneaththeST-PSCsservingPSCswithdistinctcolorsandreasonablePCEscanbeasabacksidereflector.Themirrorscreatemultiple-coloredST-categorizedbymethodbasedonthemodificationsofinternalPSCandenhancetheirharvestedlight.ThePSCcolorisorexternalPSClayers.ThemainchallengetowardthePSCgeneratedinacombinationoftransmissiveandreflectiveimplementationininfrastructureisreachingcolortunabilityatmodes.PCEsaround3%weredemonstrated(Figure4A).littlecostofthePCE.Yooetal.investigatedtheuseofnarrow-bandwidthreflectiveAmongthedesignsbasedoninternalmodifications,tuningfilters(NBRFs)onthefrontoftheITO/glasstotunethethetransparentelectrodethicknessmightbethesimplest,mostPSCs’colors.NBRFsareformedbyhigh-indexTiO2/low-indexSiO2multinanolayers(Figure4B).PCEsof18.0%,Amongthedesignsbasedon18.6%,and18.9%wereachievedforred,green,andblueinternalmodifications,tuningthe26PSCs.ThesePCEsare2%lowerthanthenoncolorfulPSCbecauseofthereducedlightabsorptionwhereahighreflectiontransparentelectrodethicknesspeakiscreated.ThispromisingstrategyforcolorfulPSCscanmightbethesimplest,mostalsobetransferredtoST-PSCs.favorable,andeffectivewaytoThesimpledepositionofacolorfulcoatingontopofthetunethePSCscolorwithoutsurfaceofST-PSChasbeendemonstratedtobeeffectivetotunePSCcolors.Schlisskeetal.reportedthecoloringofPSCsadditionalfabricationprocesses.bydepositingluminescentdown-shifting(LDS)layersontheir27frontsurface(Figure4C).TheLDSprecursorswerefavorable,andeffectivewaytotunethePSCscolorwithoutpreparedbyinkjetprintingpoly(methylmethacrylate)additionalfabricationprocesses.ForthesePSCs,highly(PMMA)mixedwithdyes(Violet570,Yellow083,andRedtransparentelectrodesandcharge-transportinglayersare300Lumogen-Fseries)onaglasssubstrate.WithLDSthecrucialtomaximizePCEsanddistinctivecolorssimulta-PSCsdemonstratedwell-definedcolorsandreporteda17%neously.ThetransparentelectrodedepositioniscriticalforthereductionofPCE.Thered-coloredPSCsachievedthehighestPSCscalability,andsputteredTCOsaremorefavorablethanPCEof9.4%.thesolution-processedconductivepolymers.Guoetal.provedcoloredST-PSCs(PCEof5.36%)byspin-Amongthedesignsbasedonexternalmodifications,the28coatingpigmentsonthethin-AuSTelectrode.Leeetal.additionofcolorfulcoatingsisapromisingapproach,astheirdemonstratedthatasubwavelengthplasmonicnanoresonatorintegrationminimallyimpactsthePSCs’electronicproperties,29canbeintegratedontheglasstomodulatethePSCscolors.andthemainconstraintistheavailabilityofefficientandThegratingisanarrayofultrathinmetallicsubwavelengthtransparentdyestomodifythePSCs’colors.nanowiresfabricatedbynanoimprintlithography.ThePSCsexhibitangle-independent(upto60°)red,green,andblue■AUTHORINFORMATIONcolorsandPCEsof10.12%,8.17%,and7.72%,respectivelyCorrespondingAuthor29(Figure4D).AnnalisaBruno−EnergyResearchInstitute@NTU(ERI@TheexternalmodificationsleadtominimallimitationsontheN),NanyangTechnologicalUniversity,Singapore637553;reproducibility,fabrication,andstabilityofthePSCsorST-orcid.org/0000-0002-6963-1682;Email:Annalisa@PSCs.ThemainlimitationofthisapproachisthePSCs’ntu.edu.sgvariationofthelightabsorptionduetotheadditionalcoating.Accordingly,thecolorcoatingtransparencyandthelight-AuthorsharvestingreductioninPSCsneedtobeevaluatedfordifferentHaoWang−EnergyResearchInstitute@NTU(ERI@N),applications.NanyangTechnologicalUniversity,Singapore637553;ColorfulSCsareextremelyattractivearchitecturalsolutionsorcid.org/0000-0003-0037-4523becauseoftheirabilitytoaddthefunctionalityofconvertingJiaLi−EnergyResearchInstitute@NTU(ERI@N),solarenergyintoelectricityinareasthatcouldnotbeexploitedNanyangTechnologicalUniversity,Singapore637553otherwise.ThedesignconsiderationsforcolorfulPSCsmustHerlinaArianitaDewi−EnergyResearchInstitute@NTUincludetheapplication’sutility,location,andorientation(ERI@N),NanyangTechnologicalUniversity,SingaporetogetherwithPCEandtransparencyrequirementsforspecific637553applications.Forexample,ifthePSCsareintegratedasNripanMathews−EnergyResearchInstitute@NTU(ERI@windowsorskylights,thevisibletransparencyofthedevicewillN),NanyangTechnologicalUniversity,Singapore637553;determinetheamountofsunlightpenetratingthebuilding.ASchoolofMaterialsScience&Engineering,NanyangTechnologicalUniversity,Singapore639798;orcid.org/balanceamongPCEs,visiblecomfort,andaestheticappear-0000-0001-5234-0822anceneedstobeconsidered.DesignapproachesincludingSubodhMhaisalkar−EnergyResearchInstitute@NTUultrathinST-PSCs,generatingcolorsinthetransmissivemode,(ERI@N),NanyangTechnologicalUniversity,Singaporewillbeverysuitableforthisapplication.Incontrast,PSCscan637553;orcid.org/0000-0002-9895-2426beintegratedintobuildingfacadesasacontinuousbuildingenvelope.Inthiscase,hightransparencyisnotessentialwhileCompletecontactinformationisavailableat:highPCEanddistinctivecolorsbecomeessential.Inthecasehttps://pubs.acs.org/10.1021/acs.jpclett.0c034451327https://dx.doi.org/10.1021/acs.jpclett.0c03445J.Phys.Chem.Lett.2021,12,1321−1329

7TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLPerspectiveNotes(16)Deng,K.;Liu,Z.;Wang,M.;Li,L.NanoimprintedGrating-TheauthorsdeclarethefollowingcompetingfinancialEmbeddedPerovskiteSolarCellswithImprovedLightManagement.interest(s):Twooftheauthors,N.M.andS.M.,aredirectorsAdv.Funct.Mater.2019,29,1900830.(17)Eperon,G.E.;Burlakov,V.M.;Goriely,A.;Snaith,H.J.ofProminencePhotovoltaicsPteLtd,aperovskitesolarcellNeutralColorSemitransparentMicrostructuredPerovskiteSolarcommercializationcompany.TheotherauthorsdeclarenoCells.ACSNano2014,8,591−598.competinginterests.(18)Lee,K.-T.;Fukuda,M.;Joglekar,S.;Guo,L.J.Colored,See-throughPerovskiteSolarCellsEmployinganOpticalCavity.J.Mater.■ACKNOWLEDGMENTSChem.C2015,3,5377−5382.(19)Lu,J.-H.;Yu,Y.-L.;Chuang,S.-R.;Yeh,C.-H.;Chen,C.-P.ThisresearchissupportedbytheNationalResearchHigh-Performance,Semitransparent,EasilyTunableVividColorfulFoundation,PrimeMinister’sOffice,SingaporeunderEnergyPerovskitePhotovoltaicsFeaturingAg/Ito/AgMicrocavityStructures.InnovationResearchProgram(GrantNumbers:J.Phys.Chem.C2016,120,4233−4239.NRF2015EWT-EIRP003-004,NRF-CRP14-2014-03,Solar(20)Lee,K.-T.;Jang,J.-Y.;Ha,N.Y.;Lee,S.;Park,H.J.High-CRP:S18-1176-SCRP,andNRF2018-ITC001-001).PerformanceColorfulSemitransparentPerovskiteSolarCellswithPhase-CompensatedMicrocavities.NanoRes.2018,11,2553−2561.■(21)Jiang,Y.;Luo,B.;Jiang,F.;Jiang,F.;Fuentes-Hernandez,C.;REFERENCESLiu,T.;Mao,L.;Xiong,S.;Li,Z.;Wang,T.;etal.EfficientColorful(1)Zhang,W.;Anaya,M.;Lozano,G.;Calvo,M.E.;Johnston,M.PerovskiteSolarCellsUsingaTopPolymerElectrodeSimultaneouslyB.;Míguez,H.;Snaith,H.J.HighlyEfficientPerovskiteSolarCellsasSpectrallySelectiveAntireflectionCoating.NanoLett.2016,16,withTunableStructuralColor.NanoLett.2015,15,1698−1702.7829−7835.(2)Ji,C.;Zhang,Z.;Masuda,T.;Kudo,Y.;Guo,L.J.Vivid-Colored(22)Wang,H.;Dewi,H.A.;Koh,T.M.;Bruno,A.;Mhaisalkar,S.;SiliconSolarPanelswithHighEfficiencyandNon-IridescentMathews,N.Bifacial,Color-TunableSemitransparentPerovskiteAppearance.NanoscaleHoriz2019,4,874−880.SolarCellsforBuilding-IntegratedPhotovoltaics.ACSAppl.Mater.(3)Lee,K.;Kim,N.;Kim,K.;Um,H.-D.;Jin,W.;Choi,D.;Park,J.;Park,K.J.;Lee,S.;Seo,K.Neutral-ColoredTransparentCrystallineInterfaces2020,12,484−493.SiliconPhotovoltaics.Joule2020,4,235−246.(23)Deng,Y.;Wang,Q.;Yuan,Y.;Huang,J.VividlyColorful(4)Heinstein,P.;Ballif,C.;Perret-Aebi,L.-E.BuildingIntegratedHybridPerovskiteSolarCellsbyDoctor-BladeCoatingwithPhotovoltaics(Bipv):Review,Potentials,BarriersandMyths.GreenPerovskitePhotonicNanostructures.Mater.Horiz.2015,2,578−583.2013,3,125−156.(24)RamírezQuiroz,C.O.;Bronnbauer,C.;Levchuk,I.;Hou,Y.;(5)Green,M.A.;Dunlop,E.D.;Levi,D.H.;Hohl-Ebinger,J.;Brabec,C.J.;Forberich,K.ColoringSemitransparentPerovskiteSolarYoshita,M.;Ho-Baillie,A.W.Y.SolarCellEfficiencyTables(VersionCellsViaDielectricMirrors.ACSNano2016,10,5104−5112.54).Prog.Photovoltaics2019,27,565−575.(25)Lee,K.-T.;Jang,J.-Y.;Park,S.J.;Ok,S.A.;Park,H.J.Incident-(6)Jung,E.H.;Jeon,N.J.;Park,E.Y.;Moon,C.S.;Shin,T.J.;Angle-ControlledSemitransparentColoredPerovskiteSolarCellsYang,T.-Y.;Noh,J.H.;Seo,J.Efficient,StableandScalablewithImprovedEfficiencyExploitingaMultilayerDielectricMirror.PerovskiteSolarCellsUsingPoly(3-Hexylthiophene).Nature2019,Nanoscale2017,9,13983−13989.567,511−515.(26)Yoo,G.Y.;Azmi,R.;Kim,C.;Kim,W.;Min,B.K.;Jang,S.-Y.;(7)Yang,W.S.;Park,B.-W.;Jung,E.H.;Jeon,N.J.;Kim,Y.C.;Lee,Do,Y.R.StableandColorfulPerovskiteSolarCellsUsingaD.U.;Shin,S.S.;Seo,J.;Kim,E.K.;Noh,J.H.;etal.IodideNonperiodicSio2/Tio2Multi-NanolayerFilter.ACSNano2019,13,ManagementinFormamidinium-Lead-Halide−BasedPerovskite10129.LayersforEfficientSolarCells.Science2017,356,1376−1379.(27)Schlisske,S.;Mathies,F.;Busko,D.;Strobel,N.;Rödlmeier,T.;(8)Saliba,M.;Matsui,T.;Seo,J.-Y.;Domanski,K.;Correa-Baena,Richards,B.S.;Lemmer,U.;Paetzold,U.W.;Hernandez-Sosa,G.;J.-P.;Nazeeruddin,M.K.;Zakeeruddin,S.M.;Tress,W.;Abate,A.;Klampaftis,E.DesignandColorFlexibilityforInkjet-PrintedHagfeldt,A.;etal.Cesium-ContainingTripleCationPerovskiteSolarPerovskitePhotovoltaics.ACSAppl.EnergyMater.2019,2,764−769.Cells:ImprovedStability,ReproducibilityandHighEfficiency.Energy(28)Guo,Y.;Shoyama,K.;Sato,W.;Nakamura,E.PolymerEnviron.Sci.2016,9,1989−1997.StabilizationofLead(Ii)PerovskiteCubicNanocrystalsforSemi-(9)Gil-Escrig,L.;Momblona,C.;La-Placa,M.-G.;Boix,P.P.;transparentSolarCells.Adv.EnergyMater.2016,6,1502317.Sessolo,M.;Bolink,H.J.VacuumDepositedTriple-CationMixed-(29)Lee,K.-T.;Jang,J.-Y.;Zhang,J.;Yang,S.-M.;Park,S.;Park,H.HalidePerovskiteSolarCells.Adv.EnergyMater.2018,8,1703506.J.HighlyEfficientColoredPerovskiteSolarCellsIntegratedwith(10)Borchert,J.;Milot,R.L.;Patel,J.B.;Davies,C.L.;Wright,A.UltrathinSubwavelengthPlasmonicNanoresonators.Sci.Rep.2017,D.;MartínezMaestro,L.;Snaith,H.J.;Herz,L.M.;Johnston,M.B.7,10640.Large-Area,HighlyUniformEvaporatedFormamidiniumLead(30)Upama,M.B.;Mahmud,M.A.;Yi,H.;Elumalai,N.K.;TriiodideThinFilmsforSolarCells.ACSEnergyLett.2017,2,Conibeer,G.;Wang,D.;Xu,C.;Uddin,A.Low-Temperature2799−2804.ProcessedEfficientandColourfulSemitransparentPerovskiteSolar(11)Li,J.;Wang,H.;Chin,X.Y.;Dewi,H.A.;Vergeer,K.;Goh,T.CellsforBuildingIntegrationandTandemApplications.Org.Electron.W.;Lim,J.W.M.;Lew,J.H.;Loh,K.P.;Soci,C.;etal.Highly2019,65,401−411.EfficientThermallyCo-EvaporatedPerovskiteSolarCellsandMini-(31)Jung,J.W.;Chueh,C.-C.;Jen,A.K.-Y.High-PerformanceModules.Joule2020,4,1035−1053.SemitransparentPerovskiteSolarCellswith10%PowerConversion(12)Shi,B.;Duan,L.;Zhao,Y.;Luo,J.;Zhang,X.SemitransparentPerovskiteSolarCells:FromMaterialsandDevicestoApplications.Efficiencyand25%AverageVisibleTransmittanceBasedonAdv.Mater.2020,32,1806474.TransparentCuscnastheHole-TransportingMaterial.Adv.Energy(13)Lee,K.T.;Guo,L.J.;Park,H.J.Neutral-andMulti-ColoredMater.2015,5,1500486.SemitransparentPerovskiteSolarCells.Molecules2016,21,475.(32)Wang,W.;He,Y.;Qi,L.High-EfficiencyColorfulPerovskite(14)Tai,Q.;Yan,F.EmergingSemitransparentSolarCells:SolarCellsUsingTio2NanobowlArraysasaStructuredElectronMaterialsandDeviceDesign.Adv.Mater.2017,29,1700192.TransportLayer.Sci.ChinaMater.2020,63,35−46.(15)Yuan,L.;Wang,Z.;Duan,R.;Huang,P.;Zhang,K.;Chen,Q.;(33)Noh,J.H.;Im,S.H.;Heo,J.H.;Mandal,T.N.;Seok,S.I.Allam,N.K.;Zhou,Y.;Song,B.;Li,Y.Semi-TransparentPerovskiteChemicalManagementforColorful,Efficient,andStableInorganic−SolarCells:UnveilingtheTrade-OffbetweenTransparencyandOrganicHybridNanostructuredSolarCells.NanoLett.2013,13,Efficiency.J.Mater.Chem.A2018,6,19696−19702.1764−1769.1328https://dx.doi.org/10.1021/acs.jpclett.0c03445J.Phys.Chem.Lett.2021,12,1321−1329

8TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLPerspective(34)Cui,D.;Yang,Z.;Yang,D.;Ren,X.;Liu,Y.;Wei,Q.;Fan,H.;Zeng,J.;Liu,S.Color-TunedPerovskiteFilmsPreparedforEfficientSolarCellApplications.J.Phys.Chem.C2016,120,42−47.(35)Eperon,G.E.;Stranks,S.D.;Menelaou,C.;Johnston,M.B.;Herz,L.M.;Snaith,H.J.FormamidiniumLeadTrihalide:ABroadlyTunablePerovskiteforEfficientPlanarHeterojunctionSolarCells.EnergyEnviron.Sci.2014,7,982−988.(36)Chen,M.;Ju,M.-G.;Garces,H.F.;Carl,A.D.;Ono,L.K.;Hawash,Z.;Zhang,Y.;Shen,T.;Qi,Y.;Grimm,R.L.;etal.HighlyStableandEfficientAll-InorganicLead-FreePerovskiteSolarCellswithNative-OxidePassivation.Nat.Commun.2019,10,16.(37)RamírezQuiroz,C.O.;Levchuk,I.;Bronnbauer,C.;Salvador,M.;Forberich,K.;Heumüller,T.;Hou,Y.;Schweizer,P.;Spiecker,E.;Brabec,C.J.PushingEfficiencyLimitsforSemitransparentPerovskiteSolarCells.J.Mater.Chem.A2015,3,24071−24081.(38)Eperon,G.E.;Bryant,D.;Troughton,J.;Stranks,S.D.;Johnston,M.B.;Watson,T.;Worsley,D.A.;Snaith,H.J.Efficient,SemitransparentNeutral-ColoredSolarCellsBasedonMicro-structuredFormamidiniumLeadTrihalidePerovskite.J.Phys.Chem.Lett.2015,6,129−138.(39)Liu,Z.;Wu,L.;Wang,X.;Xu,Q.;Hu,Y.;Meng,K.;Chen,G.ImprovingEfficiencyandStabilityofColorfulPerovskiteSolarCellswithTwo-DimensionalPhotonicCrystals.Nanoscale2020,12,8425−8431.1329https://dx.doi.org/10.1021/acs.jpclett.0c03445J.Phys.Chem.Lett.2021,12,1321−1329

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭