Cluster Spin Glass Formation in the Double Double Perovskite CaMnFeTaO 6 - Kearins et al. - 2021 - Unknown

Cluster Spin Glass Formation in the Double Double Perovskite CaMnFeTaO 6 - Kearins et al. - 2021 - Unknown

ID:81816488

大小:1.88 MB

页数:6页

时间:2023-07-20

上传者:U-14522
Cluster Spin Glass Formation in the Double Double Perovskite CaMnFeTaO 6 - Kearins et al. - 2021 - Unknown_第1页
Cluster Spin Glass Formation in the Double Double Perovskite CaMnFeTaO 6 - Kearins et al. - 2021 - Unknown_第2页
Cluster Spin Glass Formation in the Double Double Perovskite CaMnFeTaO 6 - Kearins et al. - 2021 - Unknown_第3页
Cluster Spin Glass Formation in the Double Double Perovskite CaMnFeTaO 6 - Kearins et al. - 2021 - Unknown_第4页
Cluster Spin Glass Formation in the Double Double Perovskite CaMnFeTaO 6 - Kearins et al. - 2021 - Unknown_第5页
Cluster Spin Glass Formation in the Double Double Perovskite CaMnFeTaO 6 - Kearins et al. - 2021 - Unknown_第6页
资源描述:

《Cluster Spin Glass Formation in the Double Double Perovskite CaMnFeTaO 6 - Kearins et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCCArticleClusterSpinGlassFormationintheDoubleDoublePerovskiteCaMnFeTaO6PublishedaspartofTheJournalofPhysicalChemistryvirtualspecialissue“D.D.SarmaFestschrift”.PadraigKearins,ElenaSolana-Madruga,KunlangJi,ClemensRitter,andJ.PaulAttfield*CiteThis:J.Phys.Chem.C2021,125,9550−9555ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:CaMnFeTaO6hasbeensynthesizedat1200°Cunder10GPapressure.PowderneutrondiffractionshowsthatCaMnFeTaO6adoptsadoubledoubleperovskitestructure(tetragonalspacegroupP42/n,latticeparametersa=7.683(3)andc=7.685(7)Å)withcationdisorderatalltransition-metalsites.Magnetizationmeasurementsrevealanapparentferro-orferrimagnetictransitionatTm1=51KandasusceptibilitypeakatTm2=20K,butnolong-rangemagneticorderisobservedbyneutrondiffractiondownto1.5K.ThisisattributedtotheformationofsuperparamagneticclustersofferrimagneticallyorderedspinsbelowTm1thatfreezeintoaclusterspinglassatTf=Tm2.acmagnetizationmeasurementsconfirmtheclusterspinglassgroundstate.DisorderfromthesubstitutionofFe2+forMn2+andFe3+/Ta5+inversiondisruptsthenetworkofsuperexchangeinteractionsleadingtotheclusterspinglassgroundstate,incontrasttootherP42/ndoubledoubleperovskiteswherelong-rangemagneticorderisstabilized.10,11■INTRODUCTIONorderingtemperaturesrangingfrom46to76K.CaMnFeReOshowsantiparallelFe3+/Re5+ferrimagneticTheABO3perovskitestructureisknowntoacceptawide6orderingat500KandasecondferrimagneticorderingofrangeofdifferentcationsontheAandBsitesandalsoforitstheopposedinequivalenttetrahedralandsquare-planarA-siteabilitytoordermultiplecations,givingrisetodouble2+12,13perovskitesAA′B2O6andA2BB′O6.1,2CationorderinggivesMnat70K.CaMnMnReO6displaysantiferromagneticB-sitespinorderingat120KbutferromagneticorderingoftherisetoferrimagnetismandhalfmetallicityintheA2BB′O612familywithrock-salt-typeB-cationorder,notablyinA-sitespinsat100K.CaMnCoReO6ordersferrimagneticallySrFeMoO.3,4Inrecentyears,high-pressuresynthesishasbelowtheCurietemperature,TC=188K,andCaMnNiReO626isarareexampleofaninsulatingferromagneticperovskitebeenusedtoprepareanalogousdoubleperovskitesinwhich2+oxidewhereallfourdistinctspinsublatticesarecollinearlymagneticMnreplacesnonmagneticA-sitecationssuchasDownloadedviaUNIVOFPRINCEEDWARDISLANDonMay15,2021at09:50:42(UTC).14Sr2+,givingrisetofurtherferrimagneticmaterialssuchasorderedbelowTC=152K.AllofthesepreviouslystudiedSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.5,67−9doubledoubleperovskiteshavedisplayedlong-rangemagneticMn2FeReO6andMn2MReO6analogs(M=Mn,Co,Ni)whichdisplaycomplexlow-temperatureantiferromagneticorderatlowtemperatures.Inthisarticle,wereportaneworder.Thishigh-pressuresyntheticresearchalsoledtothedoubledoubleperovskiteCaMnFeTaO6thatisnotablefornotdiscoveryofanewAA′BB′O6doubledoubleperovskiteformingalong-rangespinorderbelowtheapparentmagneticstructurewithtetragonalspacegroupP42/n,whichisdoublytransitions,andaclusterspinglassgroundstateisproposed.cation-orderedwithcolumnarA-siteorderandrocksaltBordering.ThiswasfirstreportedforMnRMnSbO6(R=rare■EXPERIMENTALSECTION10,11earth)andsubsequentlyforCaMnMReO6(B=Mn,Fe,CaMnFeTaOwassynthesizedunderhigh-pressureandhigh-12−146Co,Ni)phases.temperatureconditionsbymixingstoichiometricamountsofTheP42/ndoubledoubleperovskitestructureisnotableforhavingfivedifferentcationsitesastwoinequivalentpositions(withtetrahedralandsquare-planarcoordination)areformedReceived:March10,2021withintheA-siteMn2+columns.MagneticcouplingsbetweenRevised:April14,2021themultiplespinsublatticesgiverisetocomplexmagneticPublished:April27,2021orders.MnRMnSbO6perovskitesdisplaytwoferromagneticsublatticesatthetwoMnsitesinthestructurewhichareantiferromagneticallycoupledtoeachotherwithmagnetic©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpcc.1c021729550J.Phys.Chem.C2021,125,9550−9555

1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleCa2Fe2O5,MnO,andTa2O5.Ca2Fe2O5waspreparedbysitewithintheA-cationcolumnsisfullyoccupied,butthemixingstoichiometricproportionsofCaCO3andFe2O3andtetrahedralA1andsquare-planarA2sitesthatalternatealongheatingto1200°underaflowofN2.TheCaMnFeTaO6thecolumnsofMnwerefoundtocontain12(4)and24(1)%precursormixturewaspackedintoaPtcapsuleandFe,respectively.ThepreferenceofFe2+forthesquare-planarcompressedto10GPausingaWalker-typemultianvilpress.environmentlikelyreflectscrystalfieldeffects:Fe2+isfoundin18Thesamplewasheatedover10minto1200°CandheldatthisenvironmentinthereducedoxideSrFeO2.Fe/Tathistemperaturefor20minbeforequenchingtoroomantisitedisorderof18(3)%betweentheB/B′cationpositionstemperature,afterwhichthepressurewasslowlyreleased.wasalsoobserved.TherefinedcompositionofPowderX-raydiffractionwasusedtoconfirmthatasingle-CaMn0.82Fe1.18TaO6isthusFe-richandMn-poorrelativetophaseperovskitesamplewasformed.theidealstoichiometry.TherefinedcrystalstructureisshownNeutronpowderdiffractiondatafroman∼50mgsampleinFigure2.werecollectedontheD20beamlineattheInstitutLaue-RefinedoxygencoordinatesenableprecisebonddistancesLangevin,Grenoble.DatawereanalyzedusingtheFullprofandanglestobecalculated.Bondvalencesum(BVS)suite.15MagnetisationmeasurementsweremadeusingaPPMS19calculationsusingthedistancesshowninTable1givevaluesQuantumDesignmagnetometer.of1.80,1.46,1.31,2.34,and4.16forCa,A1,A2,B1,andB2sites,respectively.Theseareconsistentwiththeidealformula■Ca2+Mn2+Fe3+Ta5+O,butvaluesforthetransitionmetalsareRESULTSANDDISCUSSION6ThecrystalstructureofCaMnFeTaO6wasanalyzedbyfittinglow,reflectingthesubstantialdisorderattheirsites.Casitsina300Kneutronpowderdiffractiondatawithwavelengthλ=large10-foldsite,andthebondlengthsshownareingood1.54Å.TheRietveldfit(Figure1)confirmsthatagreementwithvaluesfromotherdoubledoubleperov-12−14skites.BondanglesofFe−O1−TaalongthezaxisandFe−O2−TaandFe−O3−Tainthexyplaneare144.3(5),144.4(3),and149.7(3)°,whichcorrespondtoB/B′O6octahedratiltanglesof17.9(3),17.8(2),and15.2(2)°respectively.TheP42/ndoubledoubleperovskitestructureisstabilizedbythesesubstantialtiltswhichcreatethedistinct10-coordinateCaand4-coordinateMnA-sitecolumns,asseeninFigure2.ThevaluesforCaMnFeTaO6liewithintherangeof15to20°octahedraltiltsreportedfromananalysisof10structuralevolutionintheMnRMnSbO6series.ThemagneticsusceptibilityagainsttemperatureplotforCaMnFeTaO6inFigure3arevealsparamagneticbehaviorathightemperatures.AfitoftheCurie−Weissequationtoinversesusceptibilityabove150Kgaveaneffectivepara-magneticmomentofμeff=6.71μBperformulaunit(f.u.)andaWeisstemperatureofθ=−72K.Themomentissmallerthanthetheoreticalspin-onlyvalueforCaMnFeTaO6ofμeff=8.37μf.u.−1.Thismayreflecttheoff-stoichiometryobservedBfromthecationsiterefinementandalsosuggeststhathigher-Figure1.Rietveldfitto300KpowderneutrondiffractiondatafortemperaturedatawouldbeneededtoobtainamoreaccurateCaMnFeTaO6(λ=1.54Å).Scatteringfromanemptysamplecanhasestimateofμeff.ThenegativeWeisstemperatureindicatesthatbeensubtractedfromthesedata.Themagentaticksrepresentthedominantspin−spincouplingsareantiferromagnetic,consis-BraggpositionsoftheP42/ndoubledoubleperovskitephase.tentwiththeantiparallel,ferrimagneticcouplingsofA-andB-sitespinsobservedinotherdoubledoubleperovskites.TwoCaMnFeTaO6adoptstheaboveP42/ndoubledoubleapparentmagnetictransitionsareobservedatlowtemper-perovskitestructureinthetetragonalspacegroup.Thelatticeatures.Adiscontinuityassusceptibilitydeviatesawayfromparameterswererefinedtobea=7.683(3)andc=7.685(7)Curie−WeissbehaviorisobservedatTm1=51K,andaÅ.Thehighcontrastbetweentheneutronscatteringlengthsofsusceptibilitymaximumbelowwhichzero-field-cooled(ZFC)thethreetransitionmetalspresent[Mn(−3.73fm),Fe(9.45andfield-cooled(FC)datadivergeisseenatTm2=20K.16Themagnetization−field(M−H)loopat2KinFigure3bfm),andTa(6.91fm)]allowedtheirproportionsateachsitetoberefined.Theuseofasingledatasetwithoutotherhassharphystereticmagnetizationfeatureatfieldsbelow0.1Tcontrastinformation(e.g.,fromresonantX-raydata)enables(shownintheinset).Thisismostlikelyduetotracesofaonlytwoelementstoberefinedateachsite.However,anmagneticimpuritysuchasthe(Fe,Mn)3O4spinel,belowtheextensivecombinedneutronandresonantX-raystudyoflimitofdetectioninourdiffractionexperiments.TheM−Hcationdisorderinanoxideofcomparablecomplexity(thevariationotherwiseprovidesevidenceofsuperparamagneticorTl0.5Pb0.5Sr2Ca2Cu3O9superconductor)showedthatonlyoneglassyratherthanferromagneticbehavior,asM(H)showstypeofdopingateachsitewasfavored(e.g.,Cawasspecificallycontinuouscurvaturewithverylittlehysteresisanddoesnot17substitutedbyTlratherthanbyPborSr).Thislikelysaturateevenatthehighestfieldof9T.indicatesthatwhilealldopantswouldleadtosimilarincreasesFurtherD20neutrondiffractionscansusingwavelengthλ=inlatticeentropy,thecross-substitutionofonedopantis2.41Åweretakenat30and1.5Ktodetectanychangesinenthalpicallyfavoredincomplexoxides.neutronscatteringbelowTm1=51KandTm2=20K,Asubstantialamountofdisorderwasdiscoveredinrespectively.Thelow-anglescatteringregionwheremagneticCaMnFeTaO6asshownbytheresultsinTable1.TheCapeaksareexpectedisshowninFigure4a.Previously9551https://doi.org/10.1021/acs.jpcc.1c02172J.Phys.Chem.C2021,125,9550−9555

2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleTable1.StructuralParametersforCaMnFeTaO6fromthe300KNeutronRietveldFitwithDerivedBondDistances(Å)aBelowb2atomxyzBiso(Å)occCa0.2500.7500.776(1)1.33(15)1A1(Mn/Fe)0.7500.7500.75000.65(3)0.88/0.12(4)A2(Mn/Fe)0.2500.2500.75000.650.76/0.24(1)B1(Fe/Ta)0.0000.5000.50000.650.82/0.18(3)B2(Ta/Fe)0.0000.0000.50000.650.82/0.18O1−0.051(1)0.563(1)0.249(2)0.58(4)1O2−0.242(2)−0.047(1)0.565(1)0.581O3−0.252(3)0.057(1)−0.036(1)0.581Ca−O12.728(9)×2B1−O12.026(15)×2Ca−O12.856(9)×2B1−O22.073(13)×2Ca−O22.592(12)×2B1−O32.005(7)×2Ca−O32.490(5)×2⟨B1−O⟩2.034(11)Ca−O32.363(15)×2B2−O12.011(15)×2⟨Ca−O⟩2.606(10)B2−O21.961(13)×2A1−O12.101(9)×4B2−O31.975(7)×2A2−O22.112(6)×4⟨B2−O⟩1.983(11)aResidualsareR=4.44%,R=5.59%,R=4.52%,R=3.01%,andχ2=2.37.bWyckoffsitesareCa,4e;A1,2a;A2,2b;B1,4c;B2,4d;O1,pwpBraggFO2,andO3,8g.momentswerewithintheirestimatedstandarddeviations.Wethereforeconcludethatanylong-range-orderedmagneticmomentsinCaMnFeTaO6arebelowtheeffectivelimitof∼0.5μBfortheirdetectionintheseneutrondiffractionexperiments.Theformationofsuchsmall,long-range-orderedmomentsisunlikelygiventhatidealorderedmomentsof5μBareexpectedforhigh-spinS=5/Fe3+andMn2+cations.The21.5KfitisshowninFigure4b.Refinedlatticeparameterswerea=7.662(1)andc=7.661(1)anda=7.664(1)andc=7.663(2)Åat1.5and30K,respectively.TheabsenceofmagneticpeaksintheneutrondiffractionprofilesdemonstratesthatthetransitionsobservedintheFigure2.StructureofCaMnFeTaO6inspacegroupP42/nalongwithmagnetizationdatacorrespondtoshort-rangespinorders.Thethearrangementoftetrahedralandsquare-planarMn2+coordinationmagnetizationpeakatTm2=20Kistypicalofaspinglass;siteswithintheA-sitecolumns.however,spinglassesdonotusuallyalsoshowaCurie-liketransitionasseenforCaMnFeTaO6atTm1=51K.Alikelyinvestigateddoubledoubleperovskites10−14haveallhadlow-explanationisthatsuperparamagneticclustersofferrimagneti-temperaturespinorderswithpropagationvectork=[000]callyalignedspinsareformedbelowtheCurie-liketransitionatgivingmagneticdiffractioncontributionsatnuclearpeakTm1andthatthesefreezeintoaclusterspinglassatTm2.Thepositions.However,nomagneticpeaksareobservedforcorrelationlengthforthespinorderingwithinclustersistooCaMnFeTaO6fromk=[000]orothervectorsateither30orshortforanymagneticdiffractionpeakstobeseeninthe1.5K.Anadditionalmagneticdiffractionpeakisobservedatneutronscatteringdata,andthereisnolong-rangecorrelation2θ=28.5°,butthisistheintense(1/1/1/)diffractionpeakbetweenfrozenclusterspindirections.Anydiffusemagnetic222fromatraceMnOimpurity(consistentwiththeMn-poorscatterisnotdistinguishedfromotherbackgroundcontribu-compositionofthedoubledoubleperovskitephase)whichtionsinourlow-temperaturedata(Figure4a).ordersantiferromagneticallybelow120K.Otheradditionalacmagnetizationdataatvaryingfrequenciesωwerefeatures(asharppeakat34°andbroadsignalsat41−44andrecordedtoexploretheproposedclusterspinglassground53−56°)arespuriousscatteringfromtheinstrumentorsamplestate(Figure5).ThesusceptibilitypeakforCaMnFeTaO6environment.(Thesewerealsoseenforothersamplesstudiedshowsanincreasewithfrequency,confirmingthatitduringthesameneutronexperiment,andsoarenotfromthecorrespondstoaspinfreezingtransitionatTf=Tm2.TheCaMnFeTaO6sample.)ΔTf=0.23KincreaseovertheobservedfrequencyrangeRietveldfitstotheneutrondiffractionsscansat1.5and30Kcorrespondstoashiftperfrequencydecadeφ=ΔTf/(TfΔlogwerecarriedoutusingthenuclearstructuremodelfromtheω)=0.006.Thisisbelowthetypicalrangeof0.01to0.1for300Krefinement(Table1).ThemagneticMnOpeakwasLestandardspinglassesbutisingoodagreementwithvaluesforBailfittedasthenuclearpeaksfromthisphasearenotvisiblereportedclusterspinglassmaterials:φ=0.005forU2IrSi3andandthespuriousscatteringregionswereexcluded.Amagneticφ=0.002fortheoxygen-deficientperovskiteBa-20structurefitwasattemptedusingak=[000]ferrimagneticBi0.28Co0.72O2.2.ThevariationofTfcanbefittedbythemodel,withA1-andA2-siteMnspinsantiparalleltothoseVogel−Fulcherfunctionω=ω0exp[−Ea/kB(Tf−T0)]asfromFeatB1sites.However,thismadenovisibledifferenceorshownintheinsettoFigure5.However,attemptstofitthestatisticalimprovementtotheprofilefitting,andmagneticidealglasstemperatureT0,characteristicfrequencyω0,and9552https://doi.org/10.1021/acs.jpcc.1c02172J.Phys.Chem.C2021,125,9550−9555

3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure4.(a)Comparisonoflow-angleλ=2.41ÅneutrondiffractionpatternsofCaMnFeTaO6at1.5and30K.(b)Rietveldfittothe1.5Kprofile.CaMnFeTaO6peakpositionsareshownbythegreenticks,andthosefromthemagneticMnOimpurityphase,withLeBailfittedintensities,aremagenta.Figure3.(a)Magneticsusceptibility(ZFCandFCdata)andinversemagneticsusceptibility(FC,inset)forCaMnFeTaO6measuredatafieldof0.1T.TheredlineshowstheCurie−Weissfit.(b)HysteresisloopofCaMnFeTaO6at2Kwithlow-fielddataexpandedintheinset.activationenergyEasimultaneouslygavehighlycorrelatedvalues.Ea/kBistypicallyintherangeof(0.2−2)Tfforclusterspinglassesbut(2−10)Tfforconventionalspinglasses.FixingEa/kB=0.5Tf=13Kgaveω0=1.5(11)GHzandT0=25.3(1)KforCaMnFeTaO6,comparabletoEa/kB=0.24Tf=6(1)Kfittedatfixedω0=1GHzfortheclusterspinglass20BaBi0.28Co0.72O2.2,whichhasasimilarT0=25.0(1)K.OtherfeaturesofclusterspinglassesapparentinoursusceptibilitymeasurementsforCaMnFeTaO6arethestrongsuppressionofTfbyanappliedmagneticfieldandslowrelaxationdynamics.Tfchangesby23%from26KatzerofieldFigure5.Realpartoftheacmagneticsusceptibilitydataforintheacdatato20Kat0.1Tinthedcmeasurement(FigureCaMnFeTaO6,collectedatthefrequenciesωshownwhilecooling3a).A50%reductioninTfoverthesamefieldchangewasfrom70to2Kinstepsof0.5Kbetween30and20Kandof1K20observedinBaBi0.28Co0.72O2.2,anda36%suppressionwasoutsidethisrange.Eachstepwasrecordedfor1mininzeroappliedreportedforthecationdisorderedperovskiteclusterspinglassfieldwithanacdrivefieldof16Oe.TheinsetshowstheVogel−SrMn0.5Ti0.5O3(Sr2MnTiO6)asthefieldincreasedfrom0.01FulcherfittotheTfvalues.21to1T.SlowrelaxationdynamicsinCaMnFeTaO6areevidencedbythechangesinslopeseenintheacsusceptibilitySpinglassgroundstatesarefoundinmanydopedordataofFigure5at20and30K,wherethecoolingratewasdisorderedperovskiteoxidesandsometimesresultfromthechangedbyafactorof2,butwerenotexploredmorefreezingofmagneticpolaronsandferromagneticclustersofup22systematically.to∼100spins(e.g.,inLa1−xSrxCoO3).Theobservationofa9553https://doi.org/10.1021/acs.jpcc.1c02172J.Phys.Chem.C2021,125,9550−9555

4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleCurie-likemagnetizationdiscontinuityinCaMnFeTaO6Edinburgh,EdinburghEH93FD,U.K.;orcid.org/0000-suggeststhatthemagneticclustersaremuchlarger,comprising0001-6175-6053upto∼106spinsinthesuperparamagneticregime.ClusterspinKunlangJi−CentreforScienceatExtremeConditionsglassbehaviorhasbeenreportedinBaBi0.28Co0.72O2.2as(CSEC)andSchoolofChemistry,UniversityofEdinburgh,20above,inseveraldisordereddoubleperovskitessuchasEdinburghEH93FD,U.K.Sr2Mn1−xFexMoO6,whereMnandFearerandomizedatoneClemensRitter−InstitutLaue-Langevin,38042Grenoble232420oftheBsites,andinSr2FeCoO6andSr2MnTiO6,whereCedex,FranceBcationsarefullydisordered.Theobservationofthermor-Completecontactinformationisavailableat:emanentmagnetizationwithslowrelaxationdynamicsandhttps://pubs.acs.org/10.1021/acs.jpcc.1c02172othermemoryeffectswasusedtoevidencetheclusterspinglassstateinthelattermaterial,andsimilarexperimentscouldNotesbeusedtofurthercharacterizeCaMnFeTaO6.Theauthorsdeclarenocompetingfinancialinterest.TheformationofaglassymagneticgroundstateinthedoubledoubleperovskiteCaMnFeTaO6reflectsboththedilutioneffectofintroducingnonmagneticTa5+intotheB-■ACKNOWLEDGMENTScationnetworkandtheeffectofcationdisorderattransition-WeacknowledgeEPSRCforfinancialsupportandSTFCformetalsites.Neitherfactorappearssufficientbyitself.theprovisionofthebeamlineattheInstitutLaue-Langevin.MnLaMnSbOhasthesameconcentrationofS=5/cations62asCaMnFeTaO6buthaslong-rangeferrimagneticorderbelow■REFERENCESTc=48Kandthelevelsofcationdisorderandnon-(1)Vasala,S.;Karppinen,M.A2B′B′′O6Perovskites:AReview.stoichiometryobservedinCaMnCoReO6(CaMn0.7Co1.3-Prog.SolidStateChem.2015,43,1−36.ReO6)andCaMnNiReO6(CaMn1.2Ni0.8ReO6)aresimilarto(2)King,G.;Woodward,P.M.Cationorderinginperovskites.J.thoseinCaMnFeTaO6(CaMn0.8Fe1.2TaO6).TheformerMater.Chem.2010,20,5785−5796.materialsbasedonS=1/Re6+havelong-rangespinorders2(3)Kobayashi,K.I.;Kimura,T.;Sawada,H.;Terakura,K.;Tokura,belowTc=188and152Krespectively.Hence,boththeY.Room-TemperatureMagnetoresistanceinanOxideMaterialwithpresenceofnonmagneticTa5+andtheobserved18%inversionanOrderedDouble-PerovskiteStructure.Nature1998,395,677−disorderinCaMnFeTaO6areimportanttothedisruptionof680.theB-sitespinorder.Thesubstitutionof12−24%Fe2+for(4)Serrate,D.;DeTeresa,J.M.;Ibarra,M.R.DoublePerovskitesMn2+attheA1andA2sitesisalsolikelytobedisruptiveaswithFerromagnetismaboveRoomTemperature.J.Phys.:Condens.M−O−MsuperexchangeinteractionsbetweentheM=Mn2+Matter2007,19,023201.3+5(5)Li,M.-R.;Retuerto,M.;Deng,Z.;Stephens,P.W.;Croft,M.;andFedcationsareexpectedtobeantiferromagnetic,2+Huang,Q.;Wu,H.;Deng,X.;Kotliar,G.;Sanchez-Benítez,J.M.;whereasM−O−Fesuperexchangeinteractionscanbe253+5+2+etal.Giantmagnetoresistanceinthehalf-metallicdouble-perovskiteferromagnetic.TheeffectsofbothFe/TaandFe/ferrimagnetMn2FeReO6.Angew.Chem.,Int.Ed.2015,54,12069−Mn2+cationdisordersonthecomplexnetworkofexchange12073.interactionsamongA1,A2,andB1(andB2)sitesevidently(6)Arevalo-Lopez,A.M.;McNally,G.M.;Attfield,J.P.Largecreateenoughrandomnesstodisruptthelong-rangespinordermagnetizationandfrustrationswitchingofmagnetoresistanceintheinCaMnFeTaO6sothatonlyshort-rangemagneticclusterdouble-perovskiteferrimagnetMn2FeReO6.Angew.Chem.,Int.Ed.glassbehaviorisobserveddownto1.5K.2015,54,12074−12077.(7)Arévalo-López,A.M.;Stegemann,F.;Attfield,J.P.Competing■AntiferromagneticOrdersintheDoublePerovskiteMn2MnReO6CONCLUSIONS(Mn3ReO6).Chem.Commun.2016,52,5558−5560.CaMnFeTaO6extendstherangeofmagneticgroundstates(8)Frank,C.E.;McCabe,E.E.;Orlandi,F.;Manuel,P.;Tan,X.;observedintheP42/nfamilyofdoubledoubleperovskites.Deng,Z.;Croft,M.;Cascos,V.;Emge,T.;Feng,H.L.;etal.Long-rangeferro,ferri,andantiferromagneticordershaveallMn2CoReO6:arobustmulti-sublatticeantiferromagneticperovskitepreviouslybeenreported,butCaMnFeTaO6hasaclusterspinwithsmallA-sitecations.Chem.Commun.2019,55,3331−3334.glassgroundstatewithoutlong-rangemagneticorder.This(9)Solana-Madruga,E.;Alharbi,K.N.;Herz,M.;Manuel,P.;openspossibilitiesforfurtherglassyorevenquantumspinAttfield,J.P.Unconventionalmagnetisminthehighpressure‘allliquidgroundstatestobediscoveredthroughchemicaltransitionmetal’doubleperovskiteMn2NiReO6.Chem.Commun.2020,56,12574−12577.substitutionanddisordertuningwithinthisflexiblestructure(10)Solana-Madruga,E.;Árévalo-López,Á.M.;DosSantos-García,type.A.J.;Urones-Garrote,E.;Ávila-Brande,D.;Sáez-Puche,R.;Attfield,J.P.DoubleDoubleCationOrderintheHigh-PressurePerovskites■AUTHORINFORMATIONMnRMnSbO6.Angew.Chem.,Int.Ed.2016,55,9340−9344.CorrespondingAuthor(11)Solana-Madruga,E.;Arevalo-Lopez,A.M.;DosSantos-Garcia,J.PaulAttfield−CentreforScienceatExtremeConditionsA.J.;Ritter,C.;Cascales,C.;Saez-Puche,R.;Attfield,J.P.(CSEC)andSchoolofChemistry,UniversityofEdinburgh,AnisotropicmagneticstructuresoftheMnRMnSbO6high-pressuredoublyorderedperovskites.Phys.Rev.B:Condens.MatterMater.Phys.EdinburghEH93FD,U.K.;orcid.org/0000-0001-9763-2018,97,134408.3987;Email:j.p.attfield@ed.ac.uk(12)McNally,G.M.;Arevalo-Lopez,A.M.;Kearins,P.;Orlandi,F.;Manuel,P.;Attfield,J.P.ComplexFerrimagnetismandMagneto-AuthorsresistanceSwitchinginCa-BasedDoubleDoubleandTripleDoublePadraigKearins−CentreforScienceatExtremeConditionsPerovskites.Chem.Mater.2017,29,8870−8874.(CSEC)andSchoolofChemistry,UniversityofEdinburgh,(13)McNally,G.M.;Arévalo-López,Á.M.;Guillou,F.;Manuel,P.;EdinburghEH93FD,U.K.Attfield,J.P.Evolutionofcationandspinordersinthedouble-ElenaSolana-Madruga−CentreforScienceatExtremedouble-doubleperovskiteseriesCaxMn2‑xFeReO6.Phys.Rev.MaterialsConditions(CSEC)andSchoolofChemistry,Universityof2020,4,064408.9554https://doi.org/10.1021/acs.jpcc.1c02172J.Phys.Chem.C2021,125,9550−9555

5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(14)Solana-Madruga,E.;Sun,Y.;Arévalo-López,Á.M.;Attfield,J.P.Ferri-andferro-magnetisminCaMnMReO6doubledoubleperovskitesoflatetransitionmetalsM=CoandNi.Chem.Commun.2019,55,2605−2608.(15)Rodriguez-Carvajal,J.Recentadvancesinmagneticstructuredeterminationbyneutronpowderdiffraction.Phys.B1993,192,55−69.(16)Sears,V.F.Neutronscatteringlengthsandcrosssections.NeutronNews1992,3,26−37.(17)Aranda,M.A.G.;Sinclair,D.C.;Attfield,J.P.CationdistributioninthesuperconductingTl,Pb-1223phase(“Tl0.5Pb0.5Sr2Ca2Cu3O9“)fromresonantsynchrotronpowderX-raydiffraction.Phys.C1994,221,304−310.(18)Tsujimoto,Y.;Tassel,C.;Hayashi,N.;Watanabe,T.;Kageyama,H.;Yoshimura,K.;Takano,M.;Ceretti,M.;Ritter,C.;Paulus,W.Infinite-layerironoxidewithasquare-planarcoordination.Nature2007,450,1062−1065.(19)Brown,I.D.RecentDevelopmentsintheMethodsandApplicationsoftheBondValenceModel.Chem.Rev.2009,109,6858−6919.(20)Klimczuk,T.;Zandbergen,H.W.;Huang,Q.;McQueen,T.M.;Ronning,F.;Kusz,B.;Thompson,J.D.;Cava,R.J.Cluster-glassbehaviorofahighlyoxygendeficientperovskite,BaBi0.28Co0.72O2.2.J.Phys.:Condens.Matter2009,21,105801.(21)Sharma,S.;Yadav,P.;Sau,T.;Yanda,P.;Baker,P.J.;daSilva,I.;Sundaresan,A.;Lalla,N.P.Evidenceofaclusterspin-glassstateinB-sitedisorderedperovskiteSrTi0.5Mn0.5O3.J.Magn.Magn.Mater.2019,492,165671.(22)AnilKumar,P.;Nag,A.;Mathieu,R.;Das,R.;Ray,S.;Nordblad,P.;Hossain,A.;Cherian,D.;Venero,D.A.;DeBeer-Schmitt,L.;etal.Magneticpolaronsandspin-glassbehaviorininsulatingLa1‑xSrxCoO3(x=0.125and0.15).Phys.Rev.Res.2020,2,043344.(23)Poddar,A.;Mazumdar,C.MagneticfrustrationeffectinMnrichSr2Mn1‑xFexMoO6system.J.Appl.Phys.2009,106,093908.(24)Pradheesh,R.;Nair,H.S.;Kumar,C.M.N.;Lamsal,J.;Nirmala,R.;Santhosh,P.N.;Yelon,W.B.;Malik,S.K.;Sankaranarayanan,V.;Sethupathi,K.ObservationofspinglassstateinweaklyferromagneticSr2FeCoO6doubleperovskite.J.Appl.Phys.2012,111,053905.(25)Goodenough,J.B.MagnetismandtheChemicalBond;Wiley:NewYork,1963.9555https://doi.org/10.1021/acs.jpcc.1c02172J.Phys.Chem.C2021,125,9550−9555

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭