《BaZrS 3 Chalcogenide Perovskite Thin Films by H 2 S Sulfurization of Oxide Precursors - M et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterBaZrS3ChalcogenidePerovskiteThinFilmsbyH2SSulfurizationofOxidePrecursorsJoséA.Márquez,*MarinRusu,HannesHempel,IbbiY.Ahmet,MoritzKölbach,IbrahimSimsek,LeoChoubrac,GalinaGurieva,ReneGunder,SusanSchorr,andThomasUnold*CiteThis:J.Phys.Chem.Lett.2021,12,2148−2153ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Theearth-abundantternarycompoundBaZrS3,whichcrystallizesintheperovskite-typestructure,hascomeintoviewasapromisingcandidateforphotovoltaicapplications.Wepresentthesynthesisandcharacterizationofpolycrystallineperovskite-typeBaZrS3thinfilms.BaZrO3precursorlayersweredepositedbypulsedlaserdepositionandsulfurizedatvarioustemperaturesinanargon-dilutedH2Satmosphere.Weobserveincreasingincorporationofsulfurforhigherannealingtemperatures,accompaniedbyaredshiftoftheabsorptionedge,withabandgapofE=1.99eVandalargeabsorptionstrength>105cm−1gobtainedforsulfurizationtemperaturesof1000°C.X-raydiffractionanalysisandSEMindicateenhancedcrystallizationatthehigherannealingtemperatures,butnoevidenceforacrystallinesolidsolutionbetweentheBaZrO3andBaZrS3phasesisfound.Thechargecarriersummobilityestimatedfromoptical-pump−terahertz-probespectroscopyindicatesincreasingmobilitieswithincreasingsulfurizationtemperature,reachingmaximumvaluesofupto∼2cm2V−1s−1.4Theemergenceofhybridleadhalideperovskite-basedsolarthebandedge.Thesamestudyfoundabandgapof1.95eVcellshascatalyzedlargeinterestinphotovoltaicmaterialsandsuggestedthatitcouldbeanidealcandidateforfuture4researchinrecentyears.Halideperovskite-basedmaterialstandemdeviceswithSiasabottomcell.havedemonstratedexcellentoptoelectronicpropertiesleadingHerewereportthesynthesisofpolycrystallineBaZrS3thintohigh-performancesolarcells,withefficienciessurpassingfilmsfromoxideprecursors.Todoso,aseriesof∼150nm25%forsingle-junctiondevicesand29%inmonolithicthickamorphousBa−Zr−Ofilmsweredepositedbypulsed1,2tandemswithSi.However,thestabilityofthesecompoundslaserdeposition(PLD)andsubsequentlyannealedunderaandthehightoxicityoflead(Pb)iscurrentlyamajorconcern,continuousflowof5%H2S(g)inargon(seetheSupportingDownloadedviaBUTLERUNIVonMay16,2021at05:32:29(UTC).whichmaylimittheexploitationofthistechnologyintheInformationfordetails).Uponvaryingthesulfurizationmarket.temperaturefrom700to1100°C,severalcompositionalandRecently,perovskitechalcogenidematerialshavegainedstructuralchangeswereobservedforthefilms.Thesulfurizedincreasinginterestaspotentiallystablematerialswithfilmshadthicknessesrangingfrom150to250nm(Table1).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.promisingoptoelectronicpropertiesowingtotheirstructureFigure1ashowsanimageofthefilmsannealedat700,800,type.ThesematerialshavethegeneralformulaofAMX3withA900,and1000°CwhereavisiblegradualcolorchangeisbeingagroupIIcation(i.e.,Ca2+,Sr2+,orBa2+),MagroupIVappreciated.Thecolorchangegoesfromapaleyellowforthetransitionmetal(i.e.,Ti4+,Zr4+,orHf4+),andXachalcogensampleannealedat700°Cthroughtomoreorangetonesatanion(S2−orSe2−).First-principlescalculationshave800and900°C,finallyachievingaburgundytoneforthepredictedthestabilityofseveralchalcogenidecompoundssamplesulfurizedat1000°C.crystallizingintheperovskite-typestructure,withabandgapRutherfordbackscattering(RBS)measurementandX-ray3suitableforoptoelectronicdevices,includingSrSn(S/Se)3,fluorescence(XRF)analysisrevealedthatthereisagradual4,55,65,7Sr(Zr/Hf)S3,(Ca/Sr)HfSe3,(Ba/Sr)HfS3,andincreaseinthesulfurincorporationwithinthefilmswith4−6,8,9BaZrS3.Thedensityfunctionaltheorypredictionswereincreasingsulfurizationtemperature,withthe[S]/([O]+[S])confirmedexperimentallyinthesamestudyforBaZrS3,BaHfS3,SrZrS3,andSrHfS3wheretheauthorsdemonstratedthatthecompoundscrystallizeinaperovskite-typestruc-Received:January18,2021ture.4,10BaZrShasbeenoverallthemost-researchedAccepted:February19,20213compoundexperimentally,4,8,9,11,12beingtheonlyoneofitsPublished:February24,202113,14classsynthesizedintheformofpolycrystallinethinfilms.Thiscompoundhasbeenreportedbothfromtheoryaswellasexperimentallytohaveaveryhighabsorptioncoefficientnear©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.1c001772148J.Phys.Chem.Lett.2021,12,2148−2153
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterTable1.SulfurizationTemperature,Thickness,Composition,Bandgap(Eg),andSum-Mobility(∑μ)oftheChalcogenideaPerovskiteFilmssulfurizationtemperature(°C)thickness(nm)[Ba]/[Zr]XRF[S]/([S]+[O])XRFE(eV)∑μ(cm2V−1s−1)gprecursor144±150.88±0.010.00700151±100.89±0.010.25±0.013.45±0.32800226±80.90±0.010.53±0.012.61±0.150.13900256±30.91±0.010.66±0.012.25±0.150.351000251±190.90±0.010.86±0.011.99±0.122.061100202±100.87±0.010.84±0.011.99±0.082.34aThebandgap(Eg)valuesarecalculatedfromthederivativeoftheabsorptanceofthefilms.TheerrorsgivenforthebandgapcorrespondtothestandarddeviationofaGaussianpeakfittedtothederivativeoftheabsorptance(seetheSupportingInformation).Figure1.(a)PhotographicimageoftheBaZrS3−BaZrO3samplessynthesizedat700,800,900,and1000°C.(b)SEMtopviewsoftheBaZrS3−BaZrO3filmssulfurizedat800,900,1000,and1100°Cfor0.5h.(c)DiffractionpatternsoftheBaZrS3−BaZrO3filmssulfurizedatdifferenttemperatures.Themeasurementswereperformedingrazingincidenceconfigurationwithanangleof1.5°fortheincidenceX-raybeam.ReferencepositionsfortheBraggreflectionsofBaZrO3(ICSD-90049,green)andBaZrS3(ICSD-23288,red)phasesarealsoshown.ThecrystalstructuresofBaZrO3andBaZrS3areshownattheright-handsideoftheplotwhereBaatomsarerepresentedbyredspheres,Zrbybluespheres,andOandSbyorangeandyellowspheres,respectively.ratiosaturatingataround0.85forthesulfurizationsat1000expansionofthequartzsubstrate,whichduringcool-downand1100°C(seeTable1andtheSupportingInformation).inducescracksintheBaZrS3−BaZrO3films.ThisincreaseinsulfurincorporationisdrivenbytheincreaseThestructuralpropertiesofthethinfilmswerestudiedbyinannealingtemperaturebecausetheH2SgasflowwaskeptgrazingincidenceX-raydiffraction(Figure1c).TheBraggconstantforalltheprocesses.Ascatteredappearanceofbrightreflectionsobservedinthediffractogramacquiredforthecrystallinegrainsatthesurfaceofthefilmsisobservedforthesamplesulfurizedat700°Cmatchwellthereferencepositionssamplesulfurizedat800°C(seeFigure1b),whichincreaseinforcubicperovskite-typeBaZrO3(spacegroupPm3̅m).Thedensityforthesamplesulfurizedat900°C.Thebrightnesssamplesulfurizedat800°Cshowslessintenseandbroaderdifferencebetweenthecrystallinegrainsandthedarkmatrixinreflectionsatthesamepositionsasforthe700°C-sulfurizedtheSEMimagesofthesetwosamplessuggeststhecoexistencesample.Additionally,reflectionsatthepositionsexpectedforofphaseswithdifferentconductivitiesforthetwolowertheorthorhombicperovskite-typeBaZrS3(spacegroupPnma)sulfurizationtemperatures.Thefilmsulfurizedat1000°Cappearinthediffractionpatternforthesamplesulfurizedatshowsacompactgrainstructurewithgrainsizesofabout100800°C.Thepeaksofbothphasesareverybroad,indicatinganm,whichfurtherincreasestothemicrometerscaleforthenanocrystallinemicrostructureofbothphases.Astheannealingsamplesulfurizedat1100°C.Also,cracksareobservedinthetemperatureincreases,theBraggpeakscorrespondingtotheannealedthinfilms,whicharelikelyaresultofthefilmgrowthBaZrS3phasebecomemoreintenseandthosecorrespondingatrelativelyhightemperaturesandthefollowingcool-downoftoBaZrO3arereducedinintensityindicatingthatthefractionthesamples.Duringthatprocess,thethermalexpansionoftheofBaZrS3inthefilmincreaseswithincreasingsulfurizationBaZrS3−BaZrO3filmsseemsnottomatchthethermaltemperature.Thisissupportedbytheincreaseinthesulfur2149https://dx.doi.org/10.1021/acs.jpclett.1c00177J.Phys.Chem.Lett.2021,12,2148−2153
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure2.(a)Calculatedabsorptioncoefficientsforthefilmssulfurizedfor30minat700(lightyellow),800(yellow),900(orange),1000(red),and1100°C(black-solidline).Theabsorptioncoefficientofafilmsulfurizedat1000°Cfor4hisshowninbrown.Thebluedashedlineshowsthe4absorptioncoefficientforBaZrS3reportedbyNishigakietal.(b)Deducedaveragebandgapvalue(Eg)asafunctionoftheintegral[S]/([S]+[O])ratioofthefilms.TheerrorbarsrepresenttheσvalueofthefittedGaussianpeaktothederivativeoftheabsorptance(seeexampleintheSupportingInformation).(c)PLspectrumofafilmsulfurizedat1000°C(4h)measuredat30K.(d)Photoconductivitydecaysofthesampleseriesmeasuredbyoptical-pump−terahertz-probemeasurements.Thevaluesatt=0correspondtotheelectronandholesummobility(ϕ∑μ)ofthesamples.contentinthethinfilmasmeasuredbyXRF(seeTable1).completelydisappeared,whilemorereflectionsrelatedtoSharpBraggpeaksoforthorhombicperovskite-typeBaZrS3canBaZrS3,albeitverybroad,begintoappear.Fortemperaturesbeobservedinthediffractionpatternofthethinfilmsabove1000°CsharpreflectionsrelatedtoBaZrS3withonlysulfurizedat1000and1100°C.Besidesthat,ataround30°,minorcomponentsduetoBaZrO3areobserved.Thesethe110Braggpeakofcubicperovskite-typeBaZrO3isstillobservationssuggestthatforthelowsulfurizationtemperaturesvisible,butwithaverysmallintensity,indicatingthattheoxide<1000°C,nanocrystallinesulfideandoxidephasesarepresentphaseispresentinthethinfilminasmallamount.andmightbecoexistingwithanamorphousoxysulfidephase.LeBailrefinementsofthediffractionpatternsofthinfilmsThiswillbediscussedbelowinrelationtotheopticalsulfurizedat1000and1100°Cdemonstratethatthesedatapropertiesmeasuredinthefilms.canbewelldescribedwiththepresenceofBaZrO3(Pm3̅m)WeappliedUV−visspectroscopytocharacterizetheopticalandBaZrS3(Pnma)(seetheSupportingInformation)andpropertiesofthesulfurizedfilms.Theabsorptioncoefficientsα15withoutthepresenceofanyadditionalcrystallinephases.ofthesamplesareshowninFigure2aandindicateadecreaseThelinewidthanalysisoftheBaZrS3Braggpeaksmeasuredintheabsorptiononsetasthesulfurizationtemperaturefordifferentincidentanglesprovesthatthethinfilmsincreases.Theshapeoftheabsorptioncoefficientsfortheprocessedat1100°Cshowahigherdegreeofcrystallinitysamplessulfurizedat1000and1100°Cshowsgoodagreementthanthoseprocessedat1000°C(moredetailsareinthewiththeellipsometrystudyreportedbyNishigakietal.forbulkSupportingInformation).BaZrS3samples,withanabsorptiononsetslightlyshiftedto4Twomainconclusionscanbedrawnfromthestructurallowerenergiesbyabout100meV.Incontrast,theabsorption14analysis:(i)TheincorporationofsulfurinthefilmislesscoefficientreportedpreviouslyforthinfilmsbyWeietal.wasenergeticallyfavorable(occursatamajorenergycostorsignificantlyred-shiftedbyabout350meV.subjecttoalargerenergeticbarrier)thanthecrystallizationofWenotethatthespectraldependenceoftheabsorptionBaZrO3,whichweinitiallyobservealreadyatanannealingcoefficientforthefilmssulfurizedattemperatures>1000°Ctemperatureof700°C.(ii)Wedonotfindevidenceforacannotbewell-describedbythesquare-rootdependenceoncrystallinesolid-solutionBaZr(OS),becausetheobservedenergyα∝(E−E)0.5,whicharisesfromaparabolicx1−x3gBraggpeaksarecenteredattheexpectedpositionsofeithertheapproximationofconductionandvalencebandandhasbeenoxygen-pureBaZrO3phaseorthesulfur-pureBaZrS3phase.foundtoagreewellwiththeabsorptioncoefficientofmost16Thisindicatesthatthecrystallinedomainsconsistofeitherdirectgapcompoundsemiconductors.Here,theabsorptioncubicBaZrO3ororthorhombicBaZrS3,butthefilmsdonotcoefficientisobservedtoincreasemoreslowlyatthecontaindomainswhereSandOarestatisticallyintermixedabsorptiononset,whichcouldbetakenasanindicationofwithinacrystallinesinglephase.Additionally,wenotethatforbandgapfluctuationsinducedbydisorder,aspreviously17,18thesulfurizationtemperatureof800°C,whenthesulfur/observedforotherchalcogenidesemiconductors.How-oxygenratioofthefilmbecomes∼50%,thecrystallinepeaksever,asdemonstratedbyNishigakietal.byadirectrelatedtoBaZrO3stronglydecrease,whileonlyoneverysmallcomparisonofDFT-calculatedopticalabsorptionandandbroadreflectionat25°relatedtoBaZrS3appears.Thisexperimentalopticalconstants,theslowincreaseinabsorptionindicatesthatatthistemperature,whenthesulfidephaseinthecaseofBaZrS3doesnotseemtoarisefromdisorderbutforms,theBaZrO3losescrystallinity.Forthesulfurizationrathercanbeexplainedwiththenatureofthevalenceandtemperatureof900°C,theBaZrO3reflectionshavealmostconductionbandsandtheopticaltransitionmatrixelements2150https://dx.doi.org/10.1021/acs.jpclett.1c00177J.Phys.Chem.Lett.2021,12,2148−2153
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter4involvedintheinterbandabsorption.Inthisstudydetailedtrappingintolocalizedstates,inwhichthecarriersareDFT-calculationscorrectlypredictedtheexperimentallyimmobileanddonotcontributetothephotoconductivity.observedslowincreaseinabsorptioncoefficientatenergiesAlternatively,thisdecaymaybeattributedtoaveryfastaroundthebandgap,withoutassumptionsofdisorderorrecombinationofchargecarriers.Thelattercaseissupporteddefects.Thecalculationsalsopredictedtheverystrongbytheabsenceofmeasurableluminescencenearthebandedgeabsorptioncoefficient>105cm−1atenergiesabovetheinoursamplesatroomtemperature,whichimpliesstrongbandgap,whichexceedstheabsorptionoftypicaldirect-gapnonradiativerecombination.Thelongcomponentofthecompoundsemiconductors,suchasCdTeorhalideperov-measuredtransientsseemstobeaphonon-relatedsignal,skites,bymorethanafactorof3.whichcannotbeattributedtoelectronicconductivityandwillFigure2bshowsthebandgapvaluesderivedfromthebesubjecttofurtherinvestigationinfuturework.Thisstrongabsorptionmeasurementsasafunctionofthe[S]/([S]+[O])nonradiativerecombinationmightbeduetothesubstoichio-contentinthefilms.Becauseoftheslowincreaseofabsorptionmetriccompositionofthesamples,whichareZr-richwithneartheonset,thedeterminationofthebandgapvaluesis[Ba]/[Zr]≈0.9(seeTable1),whilearecentreportindicatedchallenging,astheapplicationofaTaucplotimpliesastandardthatthehighestluminescenceyieldforBaZrS3wasachievedat13directbandgap-typeabsorptioncoefficient.Here,wedefinethestoichiometriccompositions([Ba]/[Zr]≈1).However,webandgapfromtheinflectionpointoftheabsorptance,whichisnotethattheresearchinthismaterialisverypreliminaryandauser-independentmethodanddoesnotdependstronglyonthesynthesisconditionsforthinfilmsobtainedsofararetheselectedfittingrangeasisthecasefortheTauc-plotexpectedtobefarfromoptimizedforachievinggoodmethod(forcomparisonwithTauc-methodseeSupportingoptoelectronicproperties.Furtherstudiesexploringtheeffect19Information).Itcanbeseenthatthebandgap(Eg)ofcompositionandthesynthesisconditionsonthemonotonicallydecreasesfromabout3.4eVforthesampleoptoelectronicpropertiesareneededtocorroboratethis.sulfurizedat700°Cto1.99eVforthesamplesprocessedatThephotoconductivitydecaysshowninFigure2daretemperaturesabove1000°C.ThisdemonstratesasignificantnormalizedbytheinducedcarrierconcentrationΔn,andbandgaptunabilityofthematerialsystem,inaccordancewiththerefore,theinitialamplitudecorrespondstothesumofthereportsonsulfurandoxygen-containingBaZrS3powdermobilityofphotoexcitedelectronsandphotoexcitedholes∑μ8samples.Thisresultissomewhatsurprisingconsideringour=Δσ/Δn/q.Themobilitiesinoursamplesincreasewithstructuralanalysisofthesamples,whichdidnotshowtheincreasedsulfurizationtemperatureandresultingScontent.presenceofacrystallinesolidsolutionoftheBa−Zr−S−OForthesamplesulfurizedat800°C([S]/([S]+[O])=0.53),system.Weproposethatthemonotonicallychangingwemeasuredamobilityof0.15cm2V−1s−1,whichincreasestoabsorptiononsetmightbeexplainedbythepresenceofan0.35cm2V−1s−1forthesampleannealedat900°C([S]/([S]amorphousoxysulfidephaseintheintermediateannealing+[O])=0.66).Samplesannealedat1000and1100°Cyieldtemperaturerange,whichcoexistswithnanocrystallineBaZrSsimilarmobilitiesof∼2cm2V−1s−1,whichiscorrelatedwith3andBaZrO3domains.Wenotethatbandgapsatorabove2.0theirsimilar[S]/([S]+[O])composition.AsimilarincreaseeVarewell-suitedforphotocatalyticwatersplitting,whichthuswithsulfurcontentwasobservedpreviouslybyHallmeasure-isapossibleapplicationforthismaterialsystem.mentsforBaZrS3thinfilmsthatweresulfurizedfromoxideTogaininsightsintotherecombinationpropertiesoftheprecursorsatcomparableconditions.Inthatstudy,mobilitysynthesizedmaterialweperformedphotoluminescencemeas-valuesofupto13.7cm2V−1s−1werereportedfortheBaZrS314urementsatlowtemperatures.Figure2cshowsthePLthinfilms.spectrumoftheBaZrS3thinfilmsulfurizedat1000°C(4h),Still,eventhehighestreportedmobilitiesinBaZrS3inthemeasuredat30K.ThePLspectrumisdominatedbytwodeepliteraturearebelowtypicalvaluesfoundforinorganichalide20broadbands,P1andP2,centeredat1.35and1.14eV,perovskitessuchasCsPbI3andalmost2ordersofmagnituderespectively.Becausethesetransitionenergiesaresignificantlylowerthanchargecarriermobilitiesmeasuredonother21smallerthanthebandgapenergy,theP1andP2bandsmustbechalcogenidematerialssuchasCu2ZnSnSe4.Wenotethatrelatedtodeepdefectstatesinthegap.Becausetheseatpresentthemobilityvaluesmeasuredforoursamplesmighttransitionsareveryclosetomidgapenergies,theassociatedbelimitedbythepresenceofoxygen-containingphasesanddefectsareexpectedtoleadtosignificantnonradiativethatfurtherimprovementsinthesynthesisconditionsmightrecombinationratesatroomtemperature.Wenotethatatleadtobettertransportproperties.However,themeasuredpresentwecannotexcludethattheobservedluminescencemobilitiesarelargerthantheonesfoundfortypicalmetalbandsareaffectedbythepresenceofimpuritiesinthefilmoroxidesusedforwatersplittingdevices,whicharetypicallylessoxygen-containingphases.InFigure2canadditionallower-than0.5cm2V−1s−1.22,23SuchalargermobilityinintensitybandP3peakingat1.85eVisobserved,whichiscombinationwithabandgapofaround2eVmakesBaZrS3closertothebandgapenergyandwhichagreeswithPLspectraalsoapromisingcandidatefordirectwater-splittingapplica-13,14previouslyobservedintheliteratureforBaZrS3.Atpresenttions.wearenotabletoconclusivelyassignthisP3transitiontoInconclusion,BaZrS3−BaZrO3perovskitefilmswereband−band,band−tailoradefect-relatedtransition.synthesizedbyannealingamorphousBa−Zr−OprecursorsatTogaininsightsintothechargecarrierdynamicsinthetemperaturesbetween700and1100°Cunderacontinuoussynthesizedfilms,time-resolvedoptical-pump−THz-probeflowofH2Sgas(5%).At700°CXRFmeasurementsindicate(OPTP)spectroscopymeasurementswereperformed.Thelowincorporationofsulfur,andthefilmsmainlyconsistofderivedphotoconductivitytransientsareshowninFigure2d,cubicperovskite-typeBaZrO3.AnincreaseofSincorporationindicatingafastinitialdecaywithtimeconstantsofaroundτ1isobservedastheannealingtemperatureisincreased,reaching≈1ps.Thisfastinitialdecayisfollowedbyalongertimeamaximum[S]/([S]+[O])ratioof∼0.85.Increasingtheconstantthatforthecaseofthesampleannealedat1000°Cissulfurizationtemperatureabove1000°Cdoesnotfurtherred-estimatedatτ2≈30ps.ThisdecaymaybeattributedtoshifttheabsorptiononsetnorincreasetheSincorporation.We2151https://dx.doi.org/10.1021/acs.jpclett.1c00177J.Phys.Chem.Lett.2021,12,2148−2153
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterestimateabandgapenergyEg=1.99eVfortheBaZrS3filmsReneGunder−DepartmentofStructureandDynamicsofsynthesizedattemperaturesabove1000°C.InaccordanceEnergyMaterials,Helmholtz-ZentrumBerlinfürMaterialienwiththeliterature,aslowincreaseoftheabsorptiononsetandundEnergieGmbH,14109Berlin,Germanyveryhighabsorptionstrengthabovethebandgapareobserved.SusanSchorr−DepartmentofStructureandDynamicsofLow-temperaturephotoluminescencemeasurementsintheEnergyMaterials,Helmholtz-ZentrumBerlinfürMaterialiensamplesulfurizedat1000°CrevealtwoluminescenceundEnergieGmbH,14109Berlin,Germany;Instituteoftransitionscenteredat1.14and1.35eVevidencingtheGeologicalSciences,FreieUniversitaetBerlin,12249Berlin,presenceofdefectstateswithinthebandgap.THz-derivedGermanychargecarriermobilitiesinthefilmsreach2cm2V−1s−1forCompletecontactinformationisavailableat:thehighestsulfurizationtemperature.Thephotoconductivityhttps://pubs.acs.org/10.1021/acs.jpclett.1c00177transientindicatesveryfastrecombinationwithinafewpicoseconds,whichisinlinewithstrongnonradiativeNotesrecombination.ThesynthesisroutepresentedhereenablesTheauthorsdeclarenocompetingfinancialinterest.chalcogenideperovskitefilmswithtunablebandgaps.However,toachievesingle-phaseBaZrS3thinfilms,theuseofoxygen-■freeprecursorlayersmightbeamoresuitableapproach.ACKNOWLEDGMENTSWeacknowledgesupportfromtheHelmholtz-Energy-Materi-■alsFoundry(HEMF)ProjectinprovidingfundingfortheASSOCIATEDCONTENTmaterialssynthesisfacility.LarsSteinkopfisacknowledgedfor*sıSupportingInformationsupportwiththePLDdepositions.J.A.M.acknowledgesTheSupportingInformationisavailablefreeofchargeatHampusNäsströmandJonathanScraggforfruitfuldiscussions.https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00177.TheauthorsacknowledgetheIonBeamCenterattheExperimentalmethods,extendedgrazingincidenceXRDHelmholtz-ZentrumDresden-Rossendorf(Germany)fortheanalysis,RBSanalysis,absorptivityandbandgappossibilityofperformingtheRBSmeasurements.RenéHellerestimationcomparison,andfittotheOPTPtransientisthankedforhisRBSusersupport.(PDF)■REFERENCES■(1)Al-Ashouri,A.;Köhnen,E.;Li,B.;Magomedov,A.;Hempel,H.;AUTHORINFORMATIONCaprioglio,P.;Márquez,J.A.;MoralesVilches,A.B.;Kasparavicius,CorrespondingAuthorsE.;Smith,J.A.;etal.MonolithicPerovskite/SiliconTandemSolarJoséA.Márquez−DepartmentofStructureandDynamicsofCellwith29%EfficiencybyEnhancedHoleExtraction.Science2020,EnergyMaterials,Helmholtz-ZentrumBerlinfürMaterialien370(6522),1300−1309.undEnergieGmbH,14109Berlin,Germany;orcid.org/(2)BestResearch-CellEfficiencyChart.https://www.nrel.gov/pv/0000-0002-8173-2566;Email:jose.marquez_prieto@cell-efficiency.html.helmholtz-berlin.de(3)Ju,M.-G.;Dai,J.;Ma,L.;Zeng,X.C.PerovskiteChalcogenideswithOptimalBandgapandDesiredOpticalAbsorptionforPhoto-ThomasUnold−DepartmentofStructureandDynamicsofvoltaicDevices.Adv.EnergyMater.2017,7,1700216.EnergyMaterials,Helmholtz-ZentrumBerlinfürMaterialien(4)Nishigaki,Y.;Nagai,T.;Nishiwaki,M.;Aizawa,T.;Kozawa,M.;undEnergieGmbH,14109Berlin,Germany;orcid.org/Hanzawa,K.;Kato,Y.;Sai,H.;Hiramatsu,H.;Hosono,H.;etal.0000-0002-5750-0693;Email:unold@helmholtz-berlin.deExtraordinaryStrongBand-EdgeAbsorptioninDistortedChalcoge-nidePerovskites.Sol.RRL2020,4(5),1900555.Authors(5)Peng,Y.;Sun,Q.;Chen,H.;Yin,W.J.DisparityoftheNatureofMarinRusu−DepartmentofStructureandDynamicsoftheBandGapbetweenHalideandChalcogenideSinglePerovskitesEnergyMaterials,Helmholtz-ZentrumBerlinfürMaterialienforSolarCellAbsorbers.J.Phys.Chem.Lett.2019,10(16),4566−undEnergieGmbH,14109Berlin,Germany;orcid.org/4570.0000-0002-1429-0219(6)Sun,Y.Y.;Agiorgousis,M.L.;Zhang,P.;Zhang,S.HannesHempel−DepartmentofStructureandDynamicsofChalcogenidePerovskitesforPhotovoltaics.NanoLett.2015,15EnergyMaterials,Helmholtz-ZentrumBerlinfürMaterialien(1),581−585.undEnergieGmbH,14109Berlin,Germany(7)Hanzawa,K.;Iimura,S.;Hiramatsu,H.;Hosono,H.MaterialDesignofGreen-Light-EmittingSemiconductors:Perovskite-TypeIbbiY.Ahmet−InstituteofSolarFuels,Helmholtz-ZentrumSulfideSrHfS3.J.Am.Chem.Soc.2019,141(13),5343−5349.BerlinfürMaterialienundEnergieGmbH,14109Berlin,(8)Perera,S.;Hui,H.;Zhao,C.;Xue,H.;Sun,F.;Deng,C.;Gross,Germany;orcid.org/0000-0003-0986-1950N.;Milleville,C.;Xu,X.;Watson,D.F.;etal.ChalcogenideMoritzKölbach−InstituteofSolarFuels,Helmholtz-ZentrumPerovskites−anEmergingClassofIonicSemiconductors.NanoBerlinfürMaterialienundEnergieGmbH,14109Berlin,Energy2016,22,129−135.Germany;orcid.org/0000-0003-1828-0437(9)Meng,W.;Saparov,B.;Hong,F.;Wang,J.;Mitzi,D.B.;Yan,Y.IbrahimSimsek−DepartmentofStructureandDynamicsofAlloyingandDefectControlwithinChalcogenidePerovskitesforEnergyMaterials,Helmholtz-ZentrumBerlinfürMaterialienOptimizedPhotovoltaicApplication.Chem.Mater.2016,28(3),undEnergieGmbH,14109Berlin,Germany821−829.LeoChoubrac−DepartmentofStructureandDynamicsof(10)Breternitz,J.;Schorr,S.WhatDefinesaPerovskite?Adv.EnergyMater.2018,8(34),1802366.EnergyMaterials,Helmholtz-ZentrumBerlinfürMaterialien(11)Niu,S.;Huyan,H.;Liu,Y.;Yeung,M.;Ye,K.;Blankemeier,L.;undEnergieGmbH,14109Berlin,Germany;orcid.org/Orvis,T.;Sarkar,D.;Singh,D.J.;Kapadia,R.;etal.BandgapControl0000-0003-3236-6376viaStructuralandChemicalTuningofTransitionMetalPerovskiteGalinaGurieva−DepartmentofStructureandDynamicsofChalcogenides.Adv.Mater.2017,29(9),1604733.EnergyMaterials,Helmholtz-ZentrumBerlinfürMaterialien(12)Filippone,S.;Zhao,B.;Niu,S.;Koocher,N.Z.;Silevitch,D.;undEnergieGmbH,14109Berlin,GermanyFina,I.;Rondinelli,J.M.;Ravichandran,J.;Jaramillo,R.Discoveryof2152https://dx.doi.org/10.1021/acs.jpclett.1c00177J.Phys.Chem.Lett.2021,12,2148−2153
5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterHighlyPolarizableSemiconductorsBaZrS3andBa3Zr2S7.Phys.Rev.Mater.2020,4(9),091601.(13)Comparotto,C.;Davydova,A.;Ericson,T.;Riekehr,L.;Moro,M.;Kubart,T.;Scragg,J.J.S.TheChalcogenidePerovskiteBaZrS3:ThinFilmGrowthbySputteringandRapidThermalProcessing.ACSAppl.EnergyMater.2020,3,2762.(14)Wei,X.;Hui,H.;Zhao,C.;Deng,C.;Han,M.;Yu,Z.;Sheng,A.;Roy,P.;Chen,A.;Lin,J.;etal.RealizationofBaZrS3ChalcogenidePerovskiteThinFilmsforOptoelectronics.NanoEnergy2020,68,104317.(15)LeBail,A.WholePowderPatternDecompositionMethodsandApplications:ARetrospection.PowderDiffr.2005,20(04),316−326.(16)Pankove,J.I.OpticalProcessesinSemiconductors;CourierCorporation,1975.(17)Mattheis,J.;Rau,U.;Werner,J.H.LightAbsorptionandEmissioninSemiconductorswithBandGapFluctuations-AStudyonCu(In,Ga)Se2ThinFilms.J.Appl.Phys.2007,101(11),113519.(18)Gokmen,T.;Gunawan,O.;Todorov,T.K.;Mitzi,D.B.BandTailingandEfficiencyLimitationinKesteriteSolarCells.Appl.Phys.Lett.2013,103(10),103506.(19)Carron,R.;Andres,C.;Avancini,E.;Feurer,T.;Nishiwaki,S.;Pisoni,S.;Fu,F.;Lingg,M.;Romanyuk,Y.E.;Buecheler,S.;etal.BandgapofThinFilmSolarCellAbsorbers:AComparisonofVariousDeterminationMethods.ThinSolidFilms2019,669,482−486.(20)Becker,P.;Márquez,J.A.;Just,J.;Al-Ashouri,A.;Hages,C.;Hempel,H.;Jost,M.;Albrecht,S.;Frahm,R.;Unold,T.Low̌TemperatureSynthesisofStableγ-CsPbI3PerovskiteLayersforSolarCellsObtainedbyHighThroughputExperimentation.Adv.EnergyMater.2019,9(22),1900555.(21)Hempel,H.;Redinger,A.;Repins,I.;Moisan,C.;Larramona,G.;Dennler,G.;Handwerg,M.;Fischer,S.F.;Eichberger,R.;Unold,T.IntragrainChargeTransportinKesteriteThinFilmsLimitsArisingfromCarrierLocalization.J.Appl.Phys.2016,120(17),175302.(22)Kölbach,M.;Hempel,H.;Harbauer,K.;Schleuning,M.;Petsiuk,A.;Höflich,K.;Deinhart,V.;Friedrich,D.;Eichberger,R.;Abdi,F.F.;etal.GrainBoundariesLimittheChargeCarrierTransportinPulsedLaserDepositedα-SnWO4ThinFilmPhoto-absorbers.ACSAppl.EnergyMater.2020,3(5),4320−4330.(23)Ziwritsch,M.;Müller,S.;Hempel,H.;Unold,T.;Abdi,F.F.;VanDeKrol,R.;Friedrich,D.;Eichberger,R.DirectTime-ResolvedObservationofCarrierTrappingandPolaronConductivityinBiVO4.ACSEnergyLett.2016,1(5),888−894.2153https://dx.doi.org/10.1021/acs.jpclett.1c00177J.Phys.Chem.Lett.2021,12,2148−2153
此文档下载收益归作者所有