Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown

Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown

ID:81816731

大小:4.60 MB

页数:7页

时间:2023-07-21

上传者:用户名
Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown_第1页
Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown_第2页
Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown_第3页
Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown_第4页
Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown_第5页
Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown_第6页
Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown_第7页
资源描述:

《Hypersound-Assisted Size Sorting of Microparticles on Inkjet- Patterned Protein Films - Gopalakrishnan et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/LangmuirArticleHypersound-AssistedSizeSortingofMicroparticlesonInkjet-PatternedProteinFilmsSanjanaGopalakrishnan,ShutingPan,AnnFernandez,JonathanLee,YangBai,Li-ShengWang,S.Thayumanavan,*XuexinDuan,*andVincentM.Rotello*CiteThis:Langmuir2021,37,2826−2832ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Hydrodynamicapproachesareimportantforbiomedicaldiagnostics,chemicalanalysis,andabroadrangeofindustrialapplications.Size-basedseparationandsortingisanimportanttoolfortheseapplications.Wereporttheintegrationofhypersoundtechnologywithpatternedproteinfilmstoprovideefficientsortingofmicroparticlesbasedonparticlechargeandsize.Weemployedahypersonicresonatorfortheacousticstreamingofthefluidicsystemtogeneratemicrovorticesthatexertdragforcesontheobjectsonthesurfacethataredictatedbytheirradiusofcurvature.Wedemonstrateasize-basedsortingofanionicsilicaparticlesusingproteinpatternsandgradientsfabricatedusingattractivecationicandrepulsiveanionicproteins.25■INTRODUCTIONfluidicchannelsforparticlemanipulation.However,this1approachrequiresprecisecomplexchanneldesign.AnotherHydrodynamicfluidicsystemshaveenabledrapiddevelop-2−5approachistheactivecontroloffluidicsystemsthroughmentsinnumerousapplicationsinbiomedicaldiagnostics,26276−8applicationofexternaloptical,electromagnetic,orchemicalsynthesisandanalysis,andelectronicsindus-289,10acousticforcefields.Thesestrategieshavebeeneffectivelytries.Fluidicsystemscanbereadilyminiaturized,makingutilizedforapplicationssuchasenrichingparticleconcen-themtheidealplatformsforsensorsandpoint-of-care2911trationatadesignatedpositionandpreventingbiofoulingofdiagnosticdevices.Separationandsortingofmicron-sized30,31fluidchannels.However,externalfieldscanaltertheparticlesareofkeyimportanceinareasthatinvolvechemical12structureofsoftanalytessuchasproteinsandcausetoxicitytoDownloadedviaBUTLERUNIVonMay16,2021at10:34:59(UTC).orbiologicalanalysissuchasfoodandchemicalprocessing,321314cells.medicaldiagnostics,andenvironmentalassessment.33WereporthereanacousticstreamingapproachforFluidicsystemsthatmanipulatethetranslocationofanalytesenablingthetranslocationofparticlesalongaprotein-basedalongsurfacesareimportantforusefulsorting.Amajorityof34surface.Acousticstreamingfeaturesbiocompatibility,highcurrenthydrodynamicapproachesutilizemicrofluidicsystems33,35Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.15efficiency,andstraightforwardimplementation.Akeyincludingcontinuousfluidicsystemsanddropletsystemsfor16featureofacousticstreamingapproachesistheuseofachemicaldetection.However,limitedcontrolonflow17hypersonicresonatortolocallymanipulatetheflowmotion.manipulationandtheneedforadvancedfabrication18Hypersound-assistedacousticstreamingallowsforlocalizedstrategiesstillremainachallengeintheapplicationofthree-dimensionalmanipulationoftheflowrate;theresonatorthesesystems.Forinstance,theflowrateplaysanimportant19triggersformationofmicrovorticesofthefluiduponroleinparticlemovement.However,localmanipulationofimmersion,therebygeneratingdragforceontheobjectattheflowraterequiresprecisecontroloftheinletpressure,fluid20theinterfacebetweenstreamingflowandthesolidsurface.properties,andchannelstructure,oftenrequiringacomplexWehypothesizedthatthecurvaturedependenceofthedragfluidchanneldesign.Surfacemodificationofthefluidchannelforcegeneratedbytheresonatorwouldallowforsize-basedisanalternateapproachtoimprovetheefficiencyofthese21devices,withtranslocationoftheparticlesguidedbyelectrostaticinteractionsonsurfacesbeingbroadlyuseful.22−24Received:December22,2020However,controlledtranslocationofmicroparticlesisRevised:January31,2021challenging,asdragforceexperiencedbyparticlesmustbePublished:February12,2021sufficienttoovercomefrictionandothernonspecificinteractionswithinthechannel.Oneapproachtoovercomingthisdragisinertialmicrofluidicsthatutilizesthecurvatureof©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c035982826Langmuir2021,37,2826−2832

1Langmuirpubs.acs.org/LangmuirArticleFigure1.SchematicdepictionoffabricationofpatternedproteinfilmsusinginkjetprintingandcontrolledtranslocationofanionicparticlestoelectrostaticallycomplementaryLysosurfacesthroughhypersonicresonation.AnionicBSAprovidesarepellentsurfaceasacontrol.sortingofanalytes.Efficientsizesortingusingacousticstreamingwasdemonstratedusingcarboxylate-functionalized36anionicsilicamicroparticlesofvaryingsizes.Theseparticlesweresortedelectrostaticallyusingpatternedandgradientsurfacesgeneratedfromcationiclysozyme(Lyso)andanionicbovineserumalbumin(BSA)proteins.Wedemonstrateinthisworkthatanionicparticletranslocationtocomplementarycationicsurfacesisdependentonthecompetitionbetweenthedragforcefromacousticstreamingandnonspecific/specificsupramolecularinteractionsbetweentheparticleandsurface.Particletranslocationisdependentonthecurvature-dependentdragforceandelectrostaticinteractionswiththesurface,enablingefficientsizesorting.■RESULTSANDDISCUSSIONProteinpatterns(Figure1)weregeneratedbyloadinganionicBSA(pI=4.8)andcationicLyso(pI=11)intoseparateinkcartridgestoprintgradientandpatternedproteinfilmsonglassslides(SeeFigureS1foropticalmicrographsoftheprotein36pattern).Protein-coatedslideswerethenimmersedinperfluoroperhydrophenanthrene(PFHP)at180°Cfor20mintostabilizethecoatingswithtranslationofproteincharge33tochargedsurfacecoatings.Afluidicchannelwasthenfabricatedusingepoxyglue.Thechannellengthisgovernedbytwokeyfactors(1)volumeoftheliquidrequiredforeffectivemicrovortexformationand(2)sizeofinkjet-printedprotein37patterns.Previousreportssuggestthatthechannelmustbelargerthantheacousticfieldofthehypersonicresonator(oftheorderof100μm).However,largerchannelsenableeffectivedetectionoftranslocationofparticlesalongtheproteinpatterns.Thechannelsforthisstudywereofthedimensions∼1×1×0.3cm,whichallowforeffectivemicrovortexformationwhileprovidingasufficientareatodiscernparticletranslocation.Figure2.(a)SchematicshowingtheanionicsilicaparticlesForparticletranslocationstudies,10μLof0.1mg/mLtranslocatingtothecationicLysoportionofthepatternedfilm.Thecarboxylate-functionalizedsilicaparticlesolution(proceduresilicadropletplacedatanuncoatedportionofthesubstrate.(b)describedinSupportingInformationSI-2,SI-3,andSI-4)wasMicrographsoftheproteinfilmbeforeandaftertreatmentshowingplacedatanuncoatedlocationonthesubstrateawayfromthethepresenceofparticlespredominantlyinthedropareabeforeproteinpattern.After15min,thechannelwasfloodedwithtreatment.Aftertreatment,mostoftheparticlesmigratetoLyso.As500μLofPBSandthehypersonictreatmentwasappliedasexpected,nosignificantchangeisobservedontheanionicBSAshowninFigure2a.Imagesweretakenataspecificlocationonportionofthesurface.Scalebar=200μm.thepatternedfilmsbeforeandaftertreatment.Ascanbeseen2827https://dx.doi.org/10.1021/acs.langmuir.0c03598Langmuir2021,37,2826−2832

2Langmuirpubs.acs.org/LangmuirArticleFigure3.(a)Placementofanionicsilicaparticlesontheproteinpattern,(b)micrographsof3,10,and20μmsilicaparticlesadheredtotheBSA−Lysopatternbeforeandaftertreatment.Anionic10and20μmparticleshavebeendislodgedfromBSAbutnotfromelectrostaticallycomplementaryLyso.Nochangewasobservedinthecaseof3μmparticles.(c)Quantificationofthetranslocationofsilicaparticlesbytheratioofthenumberofparticlesposttreatmenttopretreatmentformultipleimagesofdifferentareasonthepattern.ParticlesonLysoincrease,whilethoseonBSAdecreaseinthecaseof10and20μmparticles.Nosignificantdifferencewasdetectedinthecaseof3μmpatterns.Scalebar=200μmfor10and20μmparticleimages.Scalebar=40μmfor3μmparticleimages.∼8imagespersamplewereusedforcalculation.inFigure2b,mostofthesilicaparticleswerepresentinthethecaseof3μmparticles.Likewise,thenumberofparticlesregionwherethedropletwasplacedbeforetreatment.AfteradheredtoLysointhecaseof10and20μmparticleshypersonictreatment,asexpected,theanionicparticlesincreased.Theseresultswerefurthercorroboratedbytesting1,migratedtothecationicLysoregion.Nochangewasobserved7,and50μm-sizedparticles,asshowninFigureS6.ontheBSAregionofthepatternedfilm.ThistranslocationTranslocationwasobservedinthecaseof7and50μm-sizedindicatesthatthedragforcegeneratedbyacousticstreamingisparticlesbutnotinthecaseof1μm-sizedparticles.Takenabletoovercomenonspecificinteractionsofparticlestobothtogether,theseresultsareconsistentwiththegreaterforcetheunmodifiedglasssurfaceandthenegativelychargedBSAexperiencedbythelargerparticles,whichisenoughtosurface.overcomeadhesiveinteractionsandallowtheparticlestoWetheninvestigatedthesizedependencyofthedragforcetranslocatetowardthepositivelychargedLysofilm,demon-exertedbythehypersonicresonatorandhencetheabilitytostratingthatcharge-andsize-dependenttranslocationcanbetranslocateparticles.Previousstudiesindicatethatthedragutilizedforthesize-basedsortingofanalytes.33forceisdirectlyproportionaltothesizeoftheanalytes.WeBasedontheresultsobtainedinFigures2and3,wehypothesizedthatbecausethetranslocationofparticlesproceededtoutilizethehypersonictreatmentforsortingsilicadependsonthedragforce,particlesofdifferentsizeswouldmicroparticleswithourabilitytotranslocateparticlesbasedonhavedifferentvelocities.Patterns(Figure3a)wereutilizedfortheirsize.Amixtureoftwoparticlesofdifferentsizes(3and20thisstudy.Thecarboxylate-functionalizedsilicamicroparticleμm)wasappliedtoanuncoatedregionofthesurface,assolutionofdifferentsizes(3,10,and20μm,0.1mg/mLinshowninFigure4a.After15min,thechannelwasfloodedwithPBS)wasappliedtoafixedlocationandallowedtorestfor15PBS.Thetreatmentwasthenappliedtoaspecificlocation,asmin.(FiguresS4andS5showchargecharacterizationofshowninFigure4a,andopticalmicrographswereobtainedparticles,respectively).Thechannelwasthenfloodedwithaftertreatment,asshowninFigure4b.Asanticipated,the20PBS,andhypersonictreatmentwasappliedasdescribedμmparticlestranslocatefromthedropareatoLyso,whilethebefore.Imagesweretakenatspecificlocationsonthe3μmparticlesremainstationary.Noparticleswerepresentonpatternedfilmsbeforeandaftertreatment,andthenumbertheBSAregion,indicatingthattheelectrostaticinteractionofsilicaparticleswascountedforeachimage.Figure3bshowsbetweenLysoandthesilicaparticlesisresponsiblefortheopticalmicrographsofthepatternedfilmsbeforeandafteradhesionoftheparticlesontheproteinfilm.Thenumberoftreatment.SilicaparticlesthatnonspecificallyadheredtotheparticlesofbothsizesineachregionaftertreatmentwasBSAbeforetreatmentwereremovedafterhypersonictreat-counted,andsortingefficiencywascalculated,asshowninmentinthecaseoflarger10and20μmparticles.However,inTableS1.Thesortingefficiencywascalculatedtobe92%forthecaseof3μmparticles,nochangewasobservedafterthe20μmparticlesand95.%forthe3μmparticles.Thistreatment.ThisresultwasfurthercorroboratedbyquantifyingservesasfurtherdemonstrationthatoursystemmaybechangesintheparticleratioatseverallocationsontheBSAemployedasastrategyforefficientandrapidsortingofandLysoregion(Figure3c).Itcanbeseenthatthenumberofmicron-sizedanalytes.particlesonBSAdecreasedsignificantlyinthecaseof10andAkeyfeatureofoursortingstrategyistheabilitytolocally20μmparticles,whilenosignificantchangeswereobservedincontrolthemotionofparticlesthroughacombinationof2828https://dx.doi.org/10.1021/acs.langmuir.0c03598Langmuir2021,37,2826−2832

3Langmuirpubs.acs.org/LangmuirArticleFigure5.(a)Schematicdepictionofmovementoftheparticlesalongachargegradientduetohypersonictreatment.(b)Micrographsofthegradientfilmbeforeandaftertreatmentshowingmorepronouncedgradientaftertreatment.ThisindicatesthatparticlesnonspecificallyadheredtoBSAaredislodgedbytreatment.Scalebars=200μm.■CONCLUSIONSThisstudypresentsastrategyforthetranslocationandsortingofanalytesusingahydrodynamicapproachbasedonGHzacousticstreaming.Thesestudiesdemonstratetheabilityofhypersound-basedmicrovorticestoovercomethelimitationsoflaminarflowinthetranslocationofparticlesalongchargedproteinpatterns.Moreover,thecurvaturedependencyofthedragforceenabledsize-basedparticlemanipulation.TakenFigure4.(a)Schematicdepictionoftheexperimentalsetup.Thetogether,thishypersonicstrategyprovidesarapidandefficientsilicadropletisplacedatanuncoatedportionofthesubstrate.(b)Micrographsoftheproteinfilmbeforeandaftertreatment.Mostofmethodforsortinganalytesonthebasisofsizeandcharge,theparticlesofbothsizesarepresentinthedropareabeforewithpotentialapplicationsinchemicalandbiomedicaltreatment.BothBSAandLysoregionsareclean.However,afteranalyses,point-of-carediagnosticsystems,andindustrialtreatment,20μmparticlesmovetowardLyso,while3μmparticlesmicrofluidicsystems.remainstationaryinthedroparea.Aftertreatment,micrographsclearlyshowseparatedregionscontainingbothparticles.Scalebar=■EXPERIMENTALMETHODS80μm.FabricationofPatternedProteinCoatings.Inkjet-PrintingofProteinPatterns.Printingwasdonedirectlyontoglasscoverslipscleanedthroughsonicationinethanol,isopropanol,andthenoxygenplasma(at300mbarfor5min).Theprotocoldetailedinref36wasfunctionalizedsurfacesandhypersonictreatment.Thissynergyfollowed.10%w/vsolutionsofBSA(obtainedfromFisherScientific)wasfurtherdemonstratedbystudyingtheabilityofparticlestoandLyso(obtainedfromFisherScientific)werepreparedusing20%v/vethanolinmilliQwaterasthesolvent.Theethanol(obtainedtranslocatealongprotein-basedchargedgradients.InkjetfromFisherScientific)wasaddedtomaintainafavorableviscosityforprintingwasusedtofabricateachargegradientgoingfrominkjetprinting,aspertheprotocolfollowedinref26.Proteinnegative(BSA)topositive(Lyso),asshowninFigure5a.Aftersolutionsweretheninjectedintoemptyinkcartridges,(obtainedfromstabilizationandchannelfabrication,500μLof0.1mg/mLInkowl)compatiblewiththeprinterEpsonXP830,througha0.22silicamicroparticlesolutioninPBSwasaddedintothechannelμmPTFEsyringefilter.Syringefilterswereusedtoremoveanyandallowedtositfor15min.AscanbeseeninFigure5b,aggregatesorundissolvedproteinstopreventcloggingoftheinkhead.FigureS1showsamicrographoftheprintedpatternandresolutionofsilicaparticlesadhereinamannerconsistentwiththechargedinkjetprinting.proteingradient.Hypersonictreatmentwasthenappliedfor15Then,protein-loadedinkcartridgeswereplacedintotheprinterminat500milliwatts(mW)withaconstantback-and-forthandtheheadcleaningprotocolontheprinterwasperformed.Patternsmotion,asshowninFigure5a.AscanbeseeninFigure5c,thewerethengeneratedontheprintCDapplicationavailablethroughgradientbecomesmorepronouncedaftertreatmentbecauseofEPSONusingoneormoreofthethreecolorchannelsmagenta,cyan,oryellowbasedonthecartridgesusedfortheproteinsolution.movementofthesilicaparticlesnonspecificallyadheredtotheTheinkheadwasflushedaftereachusewithaflushingsolutionofBSAareaofthefilm.Thissortingdemonstratesthatgigahertz70%milliQwater,20%glycerol,and10%hexanediolspikedwith(GHz)acousticstreamingcoupledwithgradientfilmsmaybeRhodamine123tohelpwithvisualizationtoremoveanydebrisandtoutilizedtolocallymanipulateparticlemotion.preventcloggingoftheinkhead.2829https://dx.doi.org/10.1021/acs.langmuir.0c03598Langmuir2021,37,2826−2832

4Langmuirpubs.acs.org/LangmuirArticleStabilizationofPatternedProteinFilms.Printedglassslipswere■ASSOCIATEDCONTENTthenthermallytreatedtostabilizetheprotein,accordingtothe*sıSupportingInformationprotocolestablishedinref34.GlassslipswereimmersedinTheSupportingInformationisavailablefreeofchargeatperfluoroperhydrophenanthrene(PFHP;obtainedfromSigma-https://pubs.acs.org/doi/10.1021/acs.langmuir.0c03598.Aldrich)maintainedat180°Cfor20min.Then,glassslipsweretakenout,allowedtocool,washedwithperfluorohexane(obtainedDetailsaboutcalculationofefficiency,opticalmicro-fromFisherScientific)toremoveexcessPFHP,andthendriedusingagraphscharacterizingprintedproteinpattern,silicastreamofnitrogen.Patternedglassslipswerethenadheredtoglassmicroparticlefunctionalizationandcharacterization,slides(obtainedfromFisherScientific)usinganepoxyABglue.Theandparticletranslocationfor1,7,and50μmparticlessameepoxywasusedtofashionachanneltocontainthewater(PDF)requiredforPFHPtreatment.Thedimensionsofthechannelwere∼1×1×0.3cm.Theepoxywasallowedtohardenovernightbeforeuse.SynthesisofSilicaMicroparticles.AmineFunctionalizationof■AUTHORINFORMATIONtheSilicaMicroparticleSurface.500mgof10,15,and20μmSiO2CorrespondingAuthorsparticles(obtainedfromAlfaAesar;FigureS2showsdetailedreactionS.Thayumanavan−DepartmentofChemistry,UniversityofschemeandFigureS4showszetapotentials)waschargedseparatelyMassachusetts,Amherst,Amherst,Massachusetts01002,intwo-neckroundbottomflasks.Theprotocoldescribedinref36wasUSA;orcid.org/0000-0002-6475-6726;Email:thai@followed.5mLoftoluenewasaddedtotheaboveanddispersedbyumass.edusonicationfor30min.Thedispersionwaspurgedwithargonfor10XuexinDuan−StateKeyLaboratoryofPrecisionMeasuringmin,followedbytheadditionof1.75mLof(3Aminopropyl)triethoxysilane(APTES:obtainedfromSigma-Aldrich).ThemixtureTechnology&Instruments,TianjinUniversity,Tianjinwasrefluxedat110°Cunderinertconditionsfor12h.Themixture300072,China;orcid.org/0000-0002-7550-3951;wasthencentrifugedat4.4rpmfor1h,andtheprecipitatewasEmail:xduan@tju.edu.cncollected,re-dispersedinto25mLofdrytoluene(obtainedfromVincentM.Rotello−DepartmentofChemistry,UniversityofFisherScientific),sonicatedfor20min,andcentrifugedagainat4.4Massachusetts,Amherst,Amherst,Massachusetts01002,rpmfor20min.Theprecipitatewaswashedwithethanol(obtainedUSA;orcid.org/0000-0002-5184-5439;Email:rotello@fromAcrosOrganics)twice,andthefinalproductwaslyophilized.chem.umass.eduFigureS5showszetapotentialafteraminefunctionalization,indicatingachangeinsurfacecharge.AuthorsPost-FunctionalizationwithCarboxylateGroups.120mgofSanjanaGopalakrishnan−DepartmentofChemistry,SiO2−NH2wasdispersedin6mLoftetrahydrofuran(THF:obtainedUniversityofMassachusetts,Amherst,Amherst,fromFisherScientific),andthesuspensionwassonicatedfor30min.Massachusetts01002,USA;orcid.org/0000-0003-0590-Succinicanhydride(420mg,obtainedfromAcrosOrganics)was0545addedintwoportionsandstirredat0°Cfor2h,followedbystirringShutingPan−DepartmentofChemistry,Universityofatroomtemperatureovernight.Distilledwater(10mL)wasthenMassachusetts,Amherst,Amherst,Massachusetts01002,addedtoquenchunreactedsuccinicanhydride,sonicatedfor15min,USA;StateKeyLaboratoryofPrecisionMeasuringandcentrifugedat4.4rpmfor1h.Theprecipitatewasre-dispersedinTechnology&Instruments,TianjinUniversity,TianjinTHFandcentrifugedagainfor15minatthesamerpm.The300072,Chinaprecipitatewascollected,re-dispersedinwater,andcentrifugedfor30AnnFernandez−DepartmentofChemistry,Universityofminandlyophilized.FigureS5showsthezetapotentialafterMassachusetts,Amherst,Amherst,Massachusetts01002,treatment,indicatingtheoverallnegativesurfacechargeofallUSA;orcid.org/0000-0002-7139-0646particles.JonathanLee−DepartmentofChemistry,UniversityofHypersonicResonatorTreatment.ThefabricationprocessandMassachusetts,Amherst,Amherst,Massachusetts01002,workingmechanismofthehypersonicresonatorareexplainedinourUSApreviousworkref33.Ingeneral,asandwichstructurecomposedofaYangBai−StateKeyLaboratoryofPrecisionMeasuringpiezoelectricmaterialbetweentwoelectrodesisutilizedtostimulateTechnology&Instruments,TianjinUniversity,TianjinGHzacoustics,whichisacousticallyisolatedfromsubstratesbya300072,ChinaBraggreflector.Asignalgenerator(Agilent,N5181A)wasintroducedLi-ShengWang−DepartmentofChemistry,UniversityoftogenerateanRFsignal,whichwasthenamplifiedbyapowerMassachusetts,Amherst,Amherst,Massachusetts01002,amplifier(Mini-Circuits,ZHL-5W-422)andappliedtotheresonator.USAThesignalgeneratorwasalsoutilizedtocontrolthepoweramplitudeandmodeofhypersonicresonator.WhenthehypersonicresonatorisCompletecontactinformationisavailableat:immersedintoliquid,itsuffersfromanacousticdampingeffectandhttps://pubs.acs.org/10.1021/acs.langmuir.0c03598theacousticenergyisradiatedintotheliquid,triggeringacousticstreaming.Forourexperiments,thedevicewasimmersedintotheAuthorContributionschannelandfixedata1.5mmrelativedistancetotheproteinfilm.S.G.andS.P.contributedequally.ThemanuscriptwaswrittenTheresonatorwastriggeredwithanamplifiedRFsignalat1.65GHzthroughcontributionsofallauthors.Allauthorshavegivenfor15min.approvaltothefinalversionofthemanuscript.OpticalMicroscopyMeasurements.Bright-fieldopticalmi-croscopyimageswereobtainedthroughOlympusIX51at4×,10×,Fundingand20×asneeded.ForthegraphshowninFigure3c,severalimagesFundingwasprovidedbyNSFCenterforAutonomousweretakenatpredefinedlocationsonthesamplebeforeandafterChemistryCHE-1740597.V.RacknowledgessupportfromtreatmentandtheratiobetweenthenumberofparticlesaftertheNIH(DK121351).X.D.acknowledgessupportbythetreatmenttothenumberofparticlesbeforetreatmentwascalculatedNationalNaturalScienceFoundationofChina(NSFCNos.toquantifythedegreeofreorganization.Thenumberofparticleswas61674114,91743110,21861132001),NationalKeyR&DcountedusingImageJ.ProgramofChina(2017YFF0204604,2018YFE0118700),2830https://dx.doi.org/10.1021/acs.langmuir.0c03598Langmuir2021,37,2826−2832

5Langmuirpubs.acs.org/LangmuirArticleTianjinAppliedBasicResearchandAdvancedTechnology(18)Waheed,S.;Cabot,J.M.;Macdonald,N.P.;Lewis,T.;Guijt,R.(17JCJQJC43600),andthe111Project(B07014).M.;Paull,B.;Breadmore,M.C.3DPrintedMicrofluidicDevices:EnablersandBarriers.LabChip2016,16,1993−2013.Notes(19)Sollier,E.;Go,D.E.;Che,J.;Gossett,D.R.;O’Byrne,S.;Theauthorsdeclarenocompetingfinancialinterest.Weaver,W.M.;Kummer,N.;Rettig,M.;Goldman,J.;Nickols,N.;etal.Size-SelectiveCollectionofCirculatingTumorCellsUsing■VortexTechnology.LabChip2014,14,63−77.ABBREVIATIONS(20)Zhou,Y.;Ma,Z.;Ai,Y.DynamicallyTunableElasto-InertialBSA,bovineserumalbumin;Lyso,lysozyme;PFHP,perfluor-ParticleFocusingandSortinginMicrofluidics.LabChip2020,20,operhydrophenanthrene;SiO2−NH2,aminefunctionalizedsili-568−581.caparticles;SiO2−COOH,carboxylatefunctionalizedsilica(21)Gokaltun,A.;Yarmush,M.L.;Asatekin,A.;Usta,O.B.RecentparticlesAdvancesinNonbiofoulingPDMSSurfaceModificationStrategiesApplicabletoMicrofluidicTechnology.Technology2017,05,1−12.(22)Duffadar,R.D.;Davis,J.M.DynamicAdhesionBehaviorof■REFERENCESMicrometer-ScaleParticlesFlowingoverPatchySurfaceswith(1)Bae,J.;Lee,J.;Zhou,Q.;Kim,T.Micro-/NanofluidicsforNanoscaleElectrostaticHeterogeneity.J.ColloidInterfaceSci.2008,Liquid-MediatedPatterningofHybrid-ScaleMaterialStructures.Adv.326,18−27.Mater.2019,31,1804953.(23)Schachermeyer,S.;Ashby,J.;Kwon,M.;Zhong,W.Impactof(2)Zhang,D.;Bi,H.;Liu,B.;Qiao,L.DetectionofPathogenicCarrierFluidCompositiononRecoveryofNanoparticlesandMicroorganismsbyMicrofluidicsBasedAnalyticalMethods.Anal.ProteinsinFlowFieldFlowFractionation.J.Chromatogr.A2012,Chem.2018,90,5512−5520.1264,72−79.(3)Haidas,D.;Bachler,S.;Köhler,M.;Blank,L.M.;Zenobi,R.;(24)Liu,Y.;Canovas,R.;Crespo,G.A.;Cuartero,M.Thin-LayeŕDittrich,P.S.MicrofluidicPlatformforMultimodalAnalysisofPotentiometryforCreatinineDetectioninUndilutedHumanUrineEnzymeSecretioninNanoliterDropletArrays.Anal.Chem.2019,91,UsingIon-ExchangeMembranesasBarriersforChargedInterfer-2066−2073.ences.Anal.Chem.2020,92,3315−3323.(4)Bandodkar,A.J.;Gutruf,P.;Choi,J.;Lee,K.;Sekine,Y.;Reeder,(25)Gou,Y.;Jia,Y.;Wang,P.;Sun,C.ProgressofInertialJ.T.;Jeang,W.J.;Aranyosi,A.J.;Lee,S.P.;Model,J.B.;etal.MicrofluidicsinPrincipleandApplication.Sensors2018,18,1762.Battery-Free,Skin-InterfacedMicrofluidic/ElectronicSystemsfor(26)Paie,P.;Zandrini,T.;Vàzquez,R.;Osellame,R.;Bragheri,F.́SimultaneousElectrochemical,Colorimetric,andVolumetricAnalysisParticleManipulationbyOpticalForcesinMicrofluidicDevices.ofSweat.Sci.Adv.2019,5,No.eaav3294.Micromachines2018,9,200.(5)Devendran,C.;Choi,K.;Han,J.;Ai,Y.;Neild,A.;Collins,D.J.(27)Haehnel,V.;Khan,F.Z.;Mutschke,G.;Cierpka,C.;Diffraction-BasedAcousticManipulationinMicrochannelsEnablesUhlemann,M.;Fritsch,I.CombiningMagneticForcesforContactlessContinuousParticleandBacteriaFocusing.LabChip2020,20,ManipulationofFluidsinMicroelectrode-MicrofluidicSystems.Sci.2674−2688.Rep.2019,9,5103.(6)Gencer,A.;Schü̧tz,C.;Thielemans,W.InfluenceoftheParticle(28)Wu,M.;Ozcelik,A.;Rufo,J.;Wang,Z.;Fang,R.;JunHuang,ConcentrationandMarangoniFlowontheFormationofCelluloseT.AcoustofluidicSeparationofCellsandParticles.Microsyst.NanocrystalFilms.Langmuir2017,33,228−234.Nanoeng.2019,5,1−18.(7)Kim,J.H.;Jeon,T.Y.;Choi,T.M.;Shim,T.S.;Kim,S.-H.;(29)Schultz,T.;Vogt,S.;Schlupp,P.;VonWenckstern,H.;Koch,Yang,S.-M.DropletMicrofluidicsforProducingFunctionalMicro-N.;Grundmann,M.InfluenceofOxygenDeficiencyontheRectifyingparticles.Langmuir2014,30,1473−1488.BehaviorofTransparent-Semiconducting-Oxide-MetalInterfaces.Rev.(8)Yin,C.-Y.;Nikoloski,A.N.;Wang,M.MicrofluidicSolventPhys.Appl.2018,9,064001.ExtractionofPlatinumandPalladiumfromaChlorideLeachSolution(30)Mutafopulos,K.;Spink,P.;Lofstrom,C.D.;Lu,P.J.;Lu,H.;UsingAlamine336.Miner.Eng.2013,45,18−21.Sharpe,J.C.;Franke,T.;Weitz,D.A.Travelingsurfaceacousticwave(9)Khoshmanesh,K.;Tang,S.Y.;Zhu,J.Y.;Schaefer,S.;Mitchell,(TSAW)microfluidicfluorescenceactivatedcellsorter(μFACS).LabA.;Kalantar-Zadeh,K.;Dickey,M.D.LiquidMetalEnabledChip2019,19,2435−2443.Microfluidics.LabChip2017,17,974−993.(31)Hu,X.J.;Liu,H.L.;Jin,Y.X.;Liang,L.;Zhu,D.M.;Zhu,X.(10)Chen,G.;Zheng,J.;Liu,L.;Xu,L.ApplicationofMicrofluidicsQ.;Guo,S.S.;Zhou,F.L.;Yang,Y.PreciseLabel-FreeLeukocyteinWearableDevices.SmallMethods2019,3,1900688.SubpopulationSeparationUsingHybridAcoustic-OpticalChip.Lab(11)Gao,B.;Li,X.;Yang,Y.;Chu,J.;He,B.EmergingPaperChip2018,18,3405−3412.MicrofluidicDevices.Analyst2019,144,6497−6511.(32)Song,K.;Li,G.;Zu,X.;Du,Z.;Liu,L.;Hu,Z.TheFabrication(12)Tan,Y.-C.;Fisher,J.S.;Lee,A.I.;Cristini,V.;Lee,A.P.DesignandApplicationMechanismofMicrofluidicSystemsforHighofMicrofluidicChannelGeometriesfortheControlofDropletThroughputBiomedicalScreening:AReview.Micromachines2020,Volume,ChemicalConcentration,andSorting.LabChip2004,4,11,297.292−298.(33)Pan,S.;Zhang,H.;Liu,W.;Wang,Y.;Pang,W.;Duan,X.(13)Dalili,A.;Samiei,E.;Hoorfar,M.AReviewofSorting,BiofoulingRemovalandProteinDetectionUsingaHypersonicSeparationandIsolationofCellsandMicrobeadsforBiomedicalResonator.ACSSens.2017,2,1175−1183.Applications:MicrofluidicApproaches.Analyst2019,144,87−113.(34)Wang,L.-S.;Gopalakrishnan,S.;Lee,Y.-W.;Zhu,J.;(14)Yew,M.;Ren,Y.;Koh,K.S.;Sun,C.;Snape,C.AReviewofNonnenmann,S.S.;Rotello,V.M.TranslationofProteinChargeState-of-the-ArtMicrofluidicTechnologiesforEnvironmentalAppli-andHydrophilicitytoMaterialsSurfacePropertiesUsingThermalcations:DetectionandRemediation.Glob.Chall.2019,3,1800060.TreatmentinFluorousMedia.Mater.Horiz.2018,5,268−274.(15)Sun,J.;Wu,K.;Su,D.;Guo,G.;Shi,Z.ContinuousSeparation(35)Pan,S.;Jeon,T.;Luther,D.C.;Duan,X.;Rotello,V.M.ofMagneticBeadsUsingaY-ShapedMicrofluidicSystemIntegratedCytosolicDeliveryofFunctionalProteinsInVitrothroughTunablewithHard-MagneticElements.J.Phys.DAppl.Phys.2020,53,GigahertzAcoustics.ACSAppl.Mater.Interfaces2020,12,15823−035004.15829.(16)Jeon,J.;Choi,N.;Chen,H.;Moon,J.-I.;Chen,L.;Choo,J.(36)Feifel,S.C.;Lisdat,F.SilicaNanoparticlesfortheLayer-by-SERS-BasedDropletMicrofluidicsforHigh-ThroughputGradientLayerAssemblyofFullyElectro-ActiveCytochromecMultilayers.J.Analysis.LabChip2019,19,674−681.Nanobiotechnol.2011,9,59.(17)Shang,L.;Cheng,Y.;Zhao,Y.EmergingDropletMicrofluidics.(37)Cui,W.;Zhang,H.;Zhang,H.;Yang,Y.;He,M.;Qu,H.;Pang,Chem.Rev.2017,117,7964−8040.W.;Zhang,D.;Duan,X.LocalizedUltrahighFrequencyAcoustic2831https://dx.doi.org/10.1021/acs.langmuir.0c03598Langmuir2021,37,2826−2832

6Langmuirpubs.acs.org/LangmuirArticleFieldsInducedMicro-VorticesforSubmillisecondsMicrofluidicMixing.Appl.Phys.Lett.2016,109,253503.2832https://dx.doi.org/10.1021/acs.langmuir.0c03598Langmuir2021,37,2826−2832

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭