Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown

Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown

ID:81816649

大小:6.16 MB

页数:9页

时间:2023-07-21

上传者:U-14522
Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown_第1页
Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown_第2页
Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown_第3页
Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown_第4页
Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown_第5页
Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown_第6页
Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown_第7页
Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown_第8页
Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown_第9页
资源描述:

《Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates - Sveinsson et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCCArticleGrain-Size-GovernedShearFailureMechanismofPolycrystallineMethaneHydratesHenrikAndersenSveinsson,*FulongNing,PinqiangCao,BinFang,andAndersMalthe-SørenssenCiteThis:J.Phys.Chem.C2021,125,10034−10042ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Theshearfailuremechanismofpolycrystallinegashydratesiscriticalforunderstandingmarinegeohazardsrelatedtogashydratesunderachangingclimateandforsafegasrecoveryfromgashydratereservoirs.Sincecurrentexperimentaltechniquescannotresolvethemechanismonaspatialandtemporalnanoscale,molecularsimulationscanassistwithproposingandsubstantiatingnanoscalefailuremechanisms.Here,wereporttheshearfailureofpolycrystallinemethanehydratesusingdirectmoleculardynamicssimulations.Basedonthesesimulations,wesuggesttwomodesofshearbehavior,dependingonthegrainsizes,d,inthepolycrystal:grain-size-strengtheningbehaviorwithad1/3grainsizedependenceforsmallgrainsizesandgrain-size-weakeningbehaviorforlargegrainsizes.Throughthecrossoverfromstrengtheningtoweakeningbehavior,thefailuremodechangesfromshearfailurewithafailureplaneparalleltotheappliedsheartotensilefailurewithafailureplanelyingatananglewiththeappliedshear,spanninganetworkofgrainboundaries.TheexistenceofsuchachangeinmechanismsuggeststhattheHall−Petchbreakdowninmethanehydratesisduetoachangefromgrainboundaryslidingtotensileopeningbeingthemostimportantfailuremechanismwhenthegrainsizeincreases.■INTRODUCTIONpermafrost,andonshorepermafrost.ThestabilityofmarineGashydrates,alsoknownasclathratehydrates,areice-likeslopesandArctictundrarelatestonaturallyoccurringcrystallinehost−guestcompounds.Ingashydrates,gasgeohazardssuchasunderwaterlandslidesandexplosive10moleculestheguestsareencapsulatedinanetworkformedmethaneblow-outsfrompingosintheArctic,whichmaybyhydrogen-bondedwatermoleculesformingahostlattice.1leadtomethaneemissionsthatreachtheatmosphere.TheGashydratesnormallyformoutofanaqueoussolutionofgasmechanicalpropertiesofhydratesarealsoimportantforriskDownloadedvia59.88.102.6onMay14,2021at10:34:32(UTC).andwaterunderhighpressureandlowtemperatures.Inassessmentinsubseaoperationsinvolvinghydrates,bothwhennature,mostgashydratesaremethanehydratesthataredrillingthroughhydrate-bearingsedimentsinconventionaloilembeddedinhydrate-bearingsediments.Suchsedimentsareandgasrecoveryandwhendrillingintohydrateformationsforprevalentundertheseabedoncontinentalmarginsandundertherecoveryofmethanefromthehydrate-bearingsedimentArctictundra,whereagassupplyandsuitablethermodynamicitself.Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.2conditionsareprovided.GashydratescanalsoformasplugsThemechanicalpropertiesofgashydrate-bearingsediments3inoilproductionlines.Overthelastfewdecades,muchdependonthehydratedistributionpatterninthesediments,attentionhasbeendirectedtowardhydratesasanenergyhydratesaturation,porosity,particlesize,andmineralresource4,5andtheirpossibleenvironmentalimpact.6Esti-9,11−18compositionofthesedimentskeleton.Manystudiesmatesoftheglobalgashydrateinventoryvarybyordersofhavefocusedontheroleofthehydratedistributionandmagnitude,butacommonandconservativeestimateiscontentbutnotonthecontributionofthemechanical7approximately1500gigatonsofcarbon.Thisestimateisanbehaviorofthehydrateitselftothatofsediments.orderofmagnitudelargerthancurrentworldwideconventionalMillimeter-scaleobservationsoffailuremechanismsfornaturalgasreservesofapproximately120gigatonsofcarboncementedhydrate-bearingsedimentshaveshownthatbreakage38(approximately200trillionmSTP).Gashydratesmaybedistributedinvariouswaysinasedimentarymatrix.ThesedistributionpatternsarecommonlyReceived:January31,2021referredtoaspore-filling,load-bearing,andcementingRevised:March27,2021morphologies.Inload-bearingandcementingmorphologies,Published:April29,2021hydratesthemselvesmakeupanessentialpartoftheoverall9stabilityofhydrate-bearingsediments.Therefore,hydratesareimportanttothestabilityofmarineslopes,Arcticsubsea©2021TheAuthors.PublishedbyAmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpcc.1c0090110034J.Phys.Chem.C2021,125,10034−10042

1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle17ofthehydratemassitselfoccursduringshearing,andhydrate-bearingsedimentstendtobecomebothstrongerand19morebrittlewithincreasinghydratesaturation.Therefore,understandingthemechanicalpropertiesofthehydratemassitselfisfundamentaltounderstandingthemechanicalresponse20ofgashydrate-bearingsediments.Todate,onlyasmallnumberofinvestigationsonthemechanicalbehaviorsofpuregashydratesundertensileandcompressionconditionshavebeenperformedbylaboratorymeasurementsandmoleculardynamicssimulations.Forexample,ithasbeenshownthatlaboratory-formedmethanehydrateis20-to40-foldmorecreepresistantthanice(Ih)andexperiencesextensivestrainhardeningfollowedbystrain21softening.Mechanicaltestsonmassivenaturalgashydratesampleshaverevealedbrittlefailureunderreservoirconditions,withastrengthofapproximately3MPa.Molecularsimulations22haveidentifiedmicromechanismsrelatedtoguestmolecules,shownsomeintrinsicdifferencesbetweenthefailureofflawless23singlecrystalsamplesoficeandhydrate,andestimatedthethermalactivationoffractureinitiationinmonocrystalline24methanehydrates.Recently,theroleoficeinthemechanicalresponseofice-containingmethanehydrateswaselaborated25basedonmolecularsimulations.Mostgashydrates,bothinnaturalandlaboratorysettings,26−28aregrain-texturedpolycrystallineicycompounds,andthegrainsizeisimportanttothestrengthofpolycrystallinematerials.Grainsizesoflaboratory-grownmethanehydratescanbeontheorderofamicrometerortensofmicrometers,withveryslowcoarseningafterinitialformationofa28polycrystal.Innature,duetolongeravailablecoarseningtimesthanincontrolledexperiments,thegrainsizescan29becomehundredsofmicrometers.Molecularsimulationshaveshownthatgrainsizeisamainfactorcontrollingthemechanicalbehaviorsofpolycrystallinehydratesundertensileloading30andthatthegrainsizedependenceexhibitsHall−Figure1.Conceptualviewofthisstudy.ThemotivationistoPetchbehavior:thesamplebecomesweakerwithincreasingunderstandthemechanicalbehaviorofgashydrate-bearingsediments(A).Inthisstudy,wefocusonthehydrateitselfatthenanometergrainsizeabovesomecriticalgrainsize.Thesamestudyalsoscaleusingmoleculardynamicssimulations.AnexampleofamodelshowedareverseHall−Petcheffectforsmallgrainsizes,withasystemwithagrainsizeof24nmisshowninpanelsBandC.Wecrossoveratapproximately20nm.However,mostinstabilitiesshowboththeinitial,relaxedstateandastrained,fracturedstateofgashydrate-bearingsedimentspresentasshearfailures,andduringasimulation.Fromthesesimulations,weidentifyfailureinvestigationsonthedeformationandfailuremechanismsofmechanismsatthegrainlevel(D)andfindfunctionalrelationshipspolycrystallinegashydratesundershearloadinghavenot,tothatdescribethebehaviorofhydratesasafunctionofconditionssuchourknowledge,beenperformedbefore.astemperatureT,axialstressσ,andshearstressτ.Thesemayinturnbeusedtoimprovethedescriptionofgashydrate-bearingsediments.Here,wereportthesheardeformationandfailurebehaviorsColorsinthepanelswithmolecularsystemsindicatewhetherofpolycrystallinemethanehydrateswitharangeofgrainsizesmoleculesarehydratesIcoordinated(red)ornot(orange).Methaneandthedestabilizationmechanismselucidatedbymolecularmoleculesareblue.Thiscoloringhighlightsthegrainboundaries,dynamicssimulations.WeobserveaHall−Petch-likebehaviorwheretheaccommodationoftwodifferentcrystaldirectionsalonga30similartothatfortensilefailure,butadditionally,weobserveplaneresultsinastructurethatisnotperfectlysI.aclearchangeinthefailuremechanismwithanincreasinggrainsizeofthepolycrystal.Forsmallgrainsizes,thedamage■SIMULATIONStotheinteriorofgrainsisappreciable,andthefailureplaneisWeperformedmultiplelargemoleculardynamicssimulationsparalleltotheappliedshear.Forlargergrainsizes,thefailureofpolycrystallinemethanehydratesundershearloading.Abecomesfracture-like,thestrengthdecreases,thefracturemoleculardynamicssimulationisasolutionofNewton’smodebecomestensile,andthefailureplanebecomesinclinedsecondequationforasystemofmanypointparticles.Thesewithrespecttotheappliedshear.Wequantifythisbehaviorparticlesactoneachotherwithforcesthatrepresent,inanandfitittoamodelforthestrengthofsmall-grainedsolids.approximatedway,theinteractionsbetweenatomsandFigure1showsanoverviewofthisstudy,withthegeologicalmolecules.setting,theselectionofamethanehydratepolycrystalastheFollowingWuetal.,30wepreparedcubicconfigurationsoffocusofthepresetstudyandthegoalofdiscoveringfailurepolycrystallinehydratesatfulloccupancybytheVoronoimechanismsandestablishingmathematicalmodelsforthetesselationofaBCCstructurewith2×2×2unitcellfailureprocess.repetitions,resultingin16grainsshapedlikecube-truncated10035https://doi.org/10.1021/acs.jpcc.1c00901J.Phys.Chem.C2021,125,10034−10042

2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleoctahedra.Wecreatedsuchsystemswithgrainsizesrangingtokeepthecomputationalcostofrunningthemolecularfrom4to32nm,correspondingtosystemsizesrangingfromdynamicssimulationsatanacceptablelevel.Notethatifwe(10nm)3(31716particles)to(80nm)3(15877611translatethesehighstrainratesintoshearspeeds,theyarenotparticles).Figure1Bshowssnapshotsfromoneoftheunreasonablyhigh.Arepresentativesimulationwithaboxsimulationsinthepresentstudy.heightof40nmhasashearspeedof1m/s,whichisaThemethanehydratewasmodeledusingamonatomicreasonablereal-worldslidingvelocity.Thus,ahighstrainrate31waterandmethanemodel(mW).ThismodelhasthesamecanbewarrantedifthegoalofthesimulationsistodiscovermathematicalformastheStillinger−Weberforcefield(seemechanismsatplayclosetoafailinginterface,whereComputationalDetails).Monatomicwaterhasbeenshowntodeformationratesarehigherthantheglobalsteady-statereproducetheisotropicity,elasticmodulusandPoisson’sratiocreeprateoftheexperiments.ofsImethanehydrate(FigureS2).ThefracturetoughnessofmonocrystallinesIhydrateusingmWhasbeenestimatedtobe■COMPUTATIONALDETAILS240.08MPam,whichisclosetotheexperimentallyreportedCalculationofGrainBoundaryTraction.Themain32,33strengthsofpurewatericeandonlyslightlyhigherthanfacetsofthegrainsinourmodelpolycrystalhaveanormalthefracturetoughnessofsIhydratemodeledwithTIP4P/vectorn=(±1,±1,±1).Eachsuchgrainboundaryis34ice.Themonatomicwatermodelallowsforthegrowthofassociatedwithahexagonalfaceoftwoneighborgrainsinthebothamorphousandcrystallinehydratesandcansponta-polycrystal.Therefore,weconsiderthegrainboundaryregionneouslyproducehydrateswhereamorphous,sIandsIItobethehexagonalprismcenteredonthegrainboundaryand35hydratescoexist.Furthermore,ithasbeenshownthatthewithaheightof1nm.Wetaketheaveragevirialstress,S,mWmodelpresentssimilarmechanicalresponseofpoly-includingthevelocitycontribution,overthisvolume.We30crystallinehydratesasTIP4P/iceandTIP4P/2005.Thus,itaverageover1000consecutivetimesteps=10ps.ThevirialshouldbepossibletodiscovermechanismsofhydratefailureinstresshasbeenshowntoresolvethelocalstressfieldundertheemergentbehaviorofanmWmethanehydrate.mechanicalloadingofsolidmolecularsystems,evenunderNote,however,thatmonatomicwateriscoarsegrained,and38conditionsofdynamicfracture.inparticular,itusesathree-particleinteractionbetween”waterForeachparticle,i,thevirialstressistakenoverneighboringparticles”tomimicthegeometryandcharge.ThereareseveralparticlesjasissueswiththemWmodelthatshouldbenoted:Thei1ijij,pairdiffusivityoftheliquidphaseisfarfromexperimentalwater,σαβ=−mvvαβ+∑()rα−rFαβbothintermsoftheabsolutevalueandthevariationwith2j(1)changingtemperature.Theremovalofexplicithydrogensprohibitsprotondisorder,sofailuremechanismsdepending1iijk,threejjki,threekkij,three+∑rFαβ++rFαβrFαβcruciallyonprotondisorderwillnotbepresent.Proton3jk,(2)disorderhasforexamplebeenshowncrucialforachieving36elasticanisotropyofhexagonalice(Ih)insimulations.SincewhereαandβdenotethecomponentsofthestresstensorsIhydratesareisotropic,thisislessofaprobleminthepresent(e.g.,σxxorσxz).Thefirstsumisoverforcesfrompairstudy.Protondisordershouldalsoinfluencethemobilityofinteractionswithparticleiandneighborsjwithinthecutoffgrainboundaries,sincethenumberofpossiblegrainboundarydistancerc,andthesecondsumisoverforcesfromthree-bodyconfigurationsnecessarilymustincrease.Monatomicwaterinteractions.Thenotationrimeanstheαcomponentoftheαalsoenforcestetrahedralorderratherthanlettingitariseij,pairpositionvectorofparticlei.Fβistheβcomponentofthespontaneouslyfromtheshapeandchargedistributionoftheijk,threewatermolecule.Thisprohibits,forinstance,theformationoftwo-bodyforceactingonparticleiduetoparticlej.Fβis37high-densityliquidwateratextremepressures(0.7GPa).thethree-bodyforceactingonparticleiduetoparticlesjandThisis,however,farbeyondthepressuresweapplyinthisparticlek.Werotatethestresstensorsoastofindthenormalstudy.ThechoiceofthemWwatermodelinthisstudyisandsheartractiononallofthe(±1,±1,±1)grainboundaries.groundedinitssuperiorcomputationalperformance,goodWeonlyusethelocalstresscalculationtocomputetheratioofelasticpropertiesandtensilefracturestrengthvaluesforsInormaltosheartraction,theratioofmaximumshearandhydrateinadditiontoitsabilitytospontaneouslygrowingmaximumnormalstressandtoillustratethesignofthenormalseveraldifferenthydratephases.stressonparticulargrainboundaries.ThismeansthatwedoWesubjectedthepolycrystalsinthesimulationstosimplenotneedtocomputetheatomicvolume,whichwewouldhaveshearataconstantrateof2.5×107s−1andanormalpressurehadtodoifwewereaftertheactualvaluesofthelocalstress.of10MPa,correspondingapproximatelytoa1kmwaterThe(±1,±1,±1)grainboundariesgeometricallygroupintocolumn.Thesesimulationswereperformedfordifferenttwokindswithinwhichtheboundariesaregeometricallytemperaturesrangingfrom263.15to288.15K,spanningtheequivalentwithrespecttoxzshear.Thedifferencebetweenrelevanttemperaturerangeforhydratesinnature.Allthesearewhethertheyexperiencetensionorcompression,assimulationswererunlongenoughforthemethanehydrateillustratedinFigure4,partsEandF.Therefore,wetakethepolycrystalstofailmechanically,allowingustomeasureaaverageofthemagnitudeofthenormalandsheartraction,maximumshearstressandtoassesstheresidualstrength.Weseparately,foreachtypeofgrainboundary.39producedfourreplicatesimulationswithdifferentinitialPreparationofPolycrystals.Weusedliteraturevaluesvelocityseedsfortwoofthetemperature−grainsizefortheoxygenandhydrogensintheunitcellofsImethanecombinations,(273.15K,11.9nm)and(283.15K,15.9hydrate.SinceweusethemWmodel,thisisnotstrictlynm),toestimatethevariationinthemaximumstressduetonecessary,andwecouldhavejusttakentheidealizedspacechance.AnexamplesnapshotofasystemduringmechanicalgroupdescriptionalongwiththeoxygenandmethanefailureisshowninFigure1C.Ahighstrainratewasnecessarypositionsoftheprimitivecell.10036https://doi.org/10.1021/acs.jpcc.1c00901J.Phys.Chem.C2021,125,10034−10042

3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleThepolycrystalswerecreatedlikeinref30:First,we10fs.Thepolycrystalswerefirstallowedtoannealfor10nsatgeneratea(2×2×2)periodicbody-centeredcubic(BCC)T=283.15KandP=10MPainorderforthegrainstructure.Thisstructureisusedasthesitesinathree-boundariestorelax.Afterannealing,shearstrainwasappliedatdimensionalVoronoidiagram.Sincethe(2×2×2)BCCarateof2.5×107s−1byshearingthesimulationdomain.structurecontains16points,thisprocedureresultsin16ShearwasappliedforlongenoughforthesystemtofailVoronoicells,eachofwhichdefinetheextentofarandomlymechanically.Duringshearing,thethermo-baro-couplewasorientedsinglecrystalofstructureImethanehydrateinourNPxPyPz(xy)(xz)(yz)T,withxzbeingtheappliedshearandxypolycrystal.andyzbeingkeptconstantat0.ThismeansthatweusedaForceFields.MethaneandwatermoleculesweredescribedmodifiedNPTensemblewithaconstantanisotropicpressureasoneparticlepermoleculeusingthemonatomicwaterandinthelateraldirections,whilethesheardirectionswereunder31methanemodel(mW)byJacobsonandMolinero.Thestraincontrol,withxy=0,yz=0,andxzbeingdictatedbythepotentialfunctionofthisforcefieldisthesameasthatfortheappliedstrainrate.Stillinger−Weberforcefield:■Ur=+∑∑ϕϕ()ij∑∑∑(,,)rijrikθijkRESULTS23Thebehaviorofthepolycrystaldependsstronglyonthegrainiji>≠ijikj>size.Figure2Ashowsthestress−strainrelationshipsforÄÅÅpqÉÑÑÅÅijjσσyzzijijjyzzijÑÑijjσyzzsimulationsatarangeofgrainsizesandT=273.15K.FortheÅÅjjijzzjjijzzÑÑjjijzzϕε2()rABij=−ijijÅÅÅÅijjjzzjjzzÑÑÑÑexpjjzz,ÅÅÇkrrrij{kij{ÑÑÖkij−aijijσ{ϕθ3(,,)rrijikijk2ijjγσijijyzz=[−]λεijkijkcosθijkcosθ0ijkexpjjjjzzzzkraij−ijijσ{ijjγσikikyzzexpjjzzjraik−ikikσz(3)k{withacutoffdistanceforinteractionsatrc=aσ,whereboththepotentialfunctionandtheforcesvanishsmoothly.ThemWforcefieldisabout2ordersofmagnitudemoreefficientintermsofsimulatedmass×timeperCPU-hourthantheall-atomTIPnPpotentials.TheparametersofthispotentialaregiveninTable1.SimulationSetup.Allsimulationswereperformedin4041Lammps.ANose−́Hooverthermo-baro-couplewithdampingcoefficientsofTpress=1psandTtemp=0.2pswasusedtomimicNPTconditions.TheequationsofmotionwereintegratedusingtheVelocityVerletschemewithatime-stepofTable1.ValuesofParametersintheMonatomicWaterand31MethanePotentialbyJacobsonandMolineroacommonparametersA7.049556277Figure2.Shearstrengthofpolycrystallinemethanehydrates.(A)B0.6022245584showsloadingcurvesforT=273.15K.Thelegendshowsthegrainγ1.2size,d,calculatedfromthegrainvolume:d=V1/3.(B)Strengthofa1.8hydratesamplesasafunctionofthegrainsizefordifferentθ0109.5°temperatures.(C)DatafrompartBwithalogarithmicscaleonwater−waterbothaxes,withlinescorrespondingtograinsizedependenceexponentsof1/(dashedblacklines)and−1/(dottedblacklines).εww6.189kcal/mol32A1/powerlawisalsoindicated(dashedgraylines)tocontrasttheσww2.3925Å21/powerlaw.(D)DatafrompartBonaxesthatshouldrevealtheλwww23.153methane−methanegrainsizedependenceoftheshearstrengthgiventhateq4describesthetemperaturedependenceoftheshearstrengthcorrectly.Grainsizeεmm0.340kcal/mol11dependenceexponentsof/3and−/2areindicatedwiththickgrayσmm4.08ÅlinesinthesmallgrainsizeandlargegrainsizepartsofpanelD,λmmm0respectively.Noticethatfortwoofthetemperature−grainsizewater−methaneinteractionscombinations,(273.15K,11.9nm)and(283.15K,15.9nm),fourεwm0.180kcal/molsimulationswithdifferentrandominitialvelocityseedhavebeenrunσwm4.00Åtoshowthatthevarianceofthemaximumstressisverysmallλwm(m|x)0comparedtothedifferencebetweenthetemperaturegroups.TheseshowupasmostlyoverlappingmarkersinpanelB,andasseveralaSameasintheoriginalStillinger−Weberpotential.loadingcurveswiththesamegrainsizeinpanelA.10037https://doi.org/10.1021/acs.jpcc.1c00901J.Phys.Chem.C2021,125,10034−10042

4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlesmallestgrainsize,4nm,thehydrateshowsductilecharacteristicswitharelativelylowmaximumstrength.Theloadingcurvestartselasticallyatlowstrainsbeforereachinganinitialyieldstressofapproximately120MPaatastrainofapproximately0.08.Thehydratethenhardensbeforeitreachesitsultimateyieldstressofapproximately150MPa.Then,strainsofteningfollowsbutnotcatastrophicfailure.Increasingthegrainsizeleadstoashorterhardeningphase,amoreabruptfailureprocessandasmallerresidualstrengththehydratebehavesinmorebrittlefashion.Forgrainsizesfrom19.8nmandup,thefailureismoreorlessinstant.Wealsoseethatthemarkersforthedatapointswithreplicates,(273.15K,11.9nm)and(283.15K,15.9nm),fallalmostontopofeachother,showingthatthevarianceismuchsmallerthanthedifferencebetweenthetemperaturegroups.Toassesstheeffectofthegrainsizeandtemperaturesimultaneously,weestimatetheshearstrengthbytakingthemaximumofthestress−strainrelationshipfromeachsimulation.Figure2Bshowsthemaximumshearstressasafunctionofgrainsizefordifferenttemperatures.Itshowsgrainsizestrengtheningforsmallgrainsizes,uptoacriticalgrainsizeofd≈22nm,andgrainsizeweakeningforlargergrainsizes.Increasingtemperaturesleadtoadecreasingstrength.Figure2Cshowsthesamedatawithalogarithmicscaleonbothaxestorevealpower-lawrelationships.Wefindthatanexponentofapproximately1/fitswellinthegrainsize3strengtheningregime.Wedonothaveenoughdatainthelargergrainsizelimittomakeanystrongconclusions,butwedrawa1/drelationshipforreference.Beyondthecriticalgrainsize,theslopesofthemaximumstress−grainsizerelationshipsseemtovarysystematically:theyaresteeperforhighertemperatures.Weexpectthatthetemperaturedependenceofthestrengthcanbeexplainedbyanenergyactivationmodel.SuchanFigure3.Damagepatternchangesfromgraininteriordamageforapproachhasworkedpreviouslytodescribetensilecracksinsmallgrainsizestograinboundaryopeningforlargergrains.Thisishydratesbymoleculardynamicssimulations.24Followingaillustratedbysinglegrainstakenoutfromsimulationswithgrainsizesstudyonnanocrystallinemetals,42weassumeagrainslidingof8nm(A,B),12nm(C,D),and24nm(E,F)andT=273.15K.modelforthestrength:ThecolorsshowwhetherparticlesaresIcoordinatedhydrate(red),nonsIcoordinatedhydrate(orange)ormethane(blue)andthusσε=AdTe()̇UkTs/B(4)visualizedamagetothegrainsandinparticularshowthegrainmaxboundary.PanelsBandDshowthatforsmallgrainsizes,theinteriorofgrainsisdamaged,whilepanelFshowsthatthedamagepatternforHereA(d)capturesthegrainsizedependence,ε̇isthestrainlargergrainsboundariesistensileopening.rate,Tisthetemperature,kBistheBoltzmannconstant,andUsisanenergybarriertograinboundarysliding.Wethereforeseektocollapseallthemaximumstressesmeasuredinoursizesjustafterfailureofthesample.Forsmallgrains,at8nm,itsimulationsontoacommonscalingfunctionA(d)bydividingseemsthatgraincornersarewornoff.Forslightlylargergrains,themwithTeUks/BTforsomeactivationenergyU.Sincethisat12nm,weobserveintragrainfracture,resultinginpartsofsactivationmodelwasdevelopedforthenanocrystallinebranch,certaingrainsbeingtornoff.Whenintragrainfracturesoccur,weprioritizethedatapointsbelowthecriticalgrainsizeinthetheyareaccompaniedbytheformationofamethanebubble.modelfit.WeobtainthedatacollapseshowninFigure2DbyForgrainsat8and12nm,theoverallfailureplaneinthewholesettingUs=0.095eV.Thisdatacollapseshowsthatthedatafitsystemisparalleltotheappliedshear.However,forlargertheproposedmodelwellbelowthecriticalgrainsizeandgrains,especiallyford≥19.8nm,thefailuremechanismslightlylessaccuratelyforgrainsizesbeyondthecriticalgrainchangescompletely.Failurenowoccursexclusivelyatthegrainsizeofd≈22nm.Inadditiontothecollapseddatapoints,weboundariesbytheopeningofcavities.Thefailureappearsasadraweye-guidinglinescorrespondingtoad1/3grainsizetensilefractureoftheboundaries,resultinginafailureplanedependencebelowthecriticalgrainsizeandd−1/2beyondthethatliesonaslopewithrespecttotheappliedshearandcriticalgrainsize.spanninganetworkofgrainboundaries(seealsoFigureS1).Morethanjustshowingthebehavior,moleculardynamicsToverifyquantitativelythatthefailuremodechangesfromsimulationsallowfordirectobservationofwhichmechanismsshearfailuretotensilefailure,wecheckhowthenormalandchangeduringachangeinbehavior.Wefindthatthegrainsizesheartractiononthegrainboundarieschangewithgrainsizestrengtheningtoweakeningbehaviorisaccompaniedbyaandtemperature.ThegrainsresultingfromVoronoitesselationchangeinthefailuremechanismthatisbothvisuallystrikingofabody-centeredcubicstructuremainlyhavegrainandnumericallymeasurable.Figure3showsgrainsofdifferentboundarieswithnormalvectorsinthe(±1,±1,±1)10038https://doi.org/10.1021/acs.jpcc.1c00901J.Phys.Chem.C2021,125,10034−10042

5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlecoordinatedirections.Thesegrainboundarieshavetwo■DISCUSSIONfeatureswithrespecttotheappliedshear:thoseundertensionWehaveshownthattheshearfailureofpolycrystallineandthoseundercompression,sinceoneofthexz-planemethanehydratesfollowsareverseHall−Petchrelationshipupdiagonalscontractsandtheotherexpandsunderxzshear.Thetoacriticalgrainsizeofd≈22nmandaregularHall−Petchstressesonthetwokindsofgrainboundariesareshowninrelationshipbeyondthiscriticalgrainsize.ThecrossoverFigure4,partsEandF.Wefindanormalandsheartraction,σnbetweentheseHall−Petchregimesisaccompaniedbyapronouncedchangeinthefailuremode;itchangesfromsheartotensile.Wealsofindthatthetemperaturedependencebelowthecriticalgrainsizefitswithanactivationenergyof0.095eV.Thisactivationenergydoesnotcapturethetemperaturevariationtothesameextentbeyondthecriticalgrainsize.Thisisconsistentwithachangeinmechanism.Wehavenotfoundexperimentallymeasuredactivationenergiesfornanocrystallinemethanehydrates,sowesettleoncomparingthemwithnanocrystallinemetals:InmoleculardynamicssimulationsofnanocrystallineNiattemperaturesfrom300to500K,an43activationenergyof0.2eVhasbeenmeasured.Thisishigherthaninthepresentstudy,whichisexpectedforastrongermaterialwithahighermeltingpoint.ThemeltingpointofNiis1728K,itsYoung’smodulusisaround200GPa,anditsfracturetoughnessisontheorderof50MPam1/2.Comparetovaluesofaround290K,7GPa,and0.1MPam1/2forsIhydrate.Thefailureisbrittleabovethecriticalgrainsize.Consequently,shearfailuresofhydratepolycrystalsinexperiments,whosegrainsizesarefarlargerthanthoseinoursimulations,shouldbebrittle.Thisiscompatiblewithexperimentalobservations,suggestingthathydrate-bearingsandsbecomeincreasinglybrittlewithincreasinghydrate19saturationandthatcrushingofthehydratemassitselfis17,44importantduringthefailureofhydrate-bearingsands.Thisisalsoconsistentwithexperimentsonmassivenaturalgas45hydratesshowingbrittlebehavior.Intheexperimentonmassivehydrates,theyalsoconstructedarangeoffailurestressesasafunctionofgrainsizebasedontheirexperiments,previousmolecularsimulations,andpreviousexperimentsonice.Oursimulationsfromthegrain-sizeweakeningregimeallfallinsidethisrange,increasingourconfidenceinthequantitativeaccuracyofourresults.Weexpectthatdecreasingthestrainratewill,toafirstorderapproximation,reducethemaximumstressesinoursimulations.AsecondordereffectofthisispresumablythatthebrittlemechanismforlargegrainsizesisimpededmorethantheductilemechanismatsmallFigure4.Ratioofnormaltosheartractionon(111)grainboundariesgrainsizes.Thus,foralowerstrainrate,wewouldexpecttheundertension(A,C)andcompression(B,D)asafunctionofgraincrossoverlength,dm,toincrease.sizefordifferenttemperatures.TherelativenormaltractionincreasesThecomputationalcostofincreasingthesystemsizeisdrasticallywithgrainsize,indicatingachangeinthefailuremode.PanelsEandFillustratethepartsofthesystemoverwhichtheconsiderablesincethenumberofatomsincreases8-foldfortractioniscalculated(seemethodssectionfordetailsontheeachdoublingofthegrainsized.Wehaveestablishedthatthecalculation).ThecolorsinpartsEandFindicatelocalstressfrominteriorofgrainsstaysintactduringthefailureoflargegrains.blue(tension)tored(compression).Therefore,ratherthanjustscalingupthesimulationsofthepresentstudy,multiscaleapproachesusingexplicitmoleculesandτn,respectively,onthesesurfaces.Thesetractiononlyongrainboundariesandgrainjunctionscanbeawaytocomponentsshouldacttowardaperfectlytensile(σn)orrevealthemechanismsonlargerscalesandtoaccuratelyperfectlyshear(τn)failureofthegrainboundary.Theratioofdeterminewhetheranenergyactivationmodel,andifsowhatthenormaltosheartractionisshowninFigure4,partsAandactivationenergy,holdsabovethecriticalgrainsize.ThisB.Inaddition,partsCandDofFigure4showtheratiooftheactivationmodelcould,forinstance,beofasimilarnaturetomaximumnormaltomaximumshearstressascalculatedfromthatforslowtensilecrackevolutioninmonocrystalline24theprincipalstresses.Theabsolutevalueoftheratioσn/τnhydrates.Inthatmodel,forpenny-shapedcrackswithaincreasesandthenstabilizeswithgrainsize,butthevaluelengthof8nm,anactivationenergyonthesameorderaswhereitstabilizesdependsonthetemperatureforboththemeasuredinthepresentstudy(0.095eV)couldbeachievedbytensileandcompressiveboundaries.settingthemaximumstresstoapproximately560MPa,and10039https://doi.org/10.1021/acs.jpcc.1c00901J.Phys.Chem.C2021,125,10034−10042

6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleloweringthemaximumstresswouldincreasetheactivationtemperatureeffectsinteractwiththegrainsize.Futurestudiesenergy.couldthereforebenefitfromsystematicallyexaminingtheThepossiblenumberofpolycrystalconfigurationsisvast,slidingpropertiesofvarioushydrategrainboundaryconfig-bothintermsoftherotationsandgeometriesofthecrystalurations.grainsconstitutingthepolycrystal.ThepolycrystalsintheThemeasuredgrainsizesinrealhydratesarelargerthan30,46presentstudyrepresentsanidealizedcase.Previousstudiesthosewemodeledinthisstudy.However,smallergrainsmayhaveshownthatpolycrystalswithuniformlyrandomlyformduringfailure.Forinstance,duringlaboratory-controlledVoronoi-centeredgrains,presentsimilartensilebehaviorasfailureofoldAntarcticwaterice,small,recrystallizedicegrainstheirregularlyconstructed(BCCstructure)counterparts.Weofapproximately100μmformedinthegrainboundaries48maythereforereasonablyconjecturethattheeffectsobservedbetweentheoriginalmillimeter-sizedgrains.Ifasimilarinthepresentstudywillholdformoredisorderlypolycrystals.mechanismexistsforhydrates,theslowcoarseningof28Thegrainsizedependencerevealedinthisstudyissimilartohydratescouldpossiblyleadtoastrongsmall-grained30thatobservedundertensionandcompression.However,boundaryzonefacilitatinghighcreepresistance.undershearloading,wefindthatthechangeinthefailuremechanismasthegrainsizecrossesthecriticalgrainsizeis■CONCLUSIONSmuchmorepronounced.ThereisaclearchangefromfailureUnderstandingthefailuremechanismsofpolycrystallinethattearsoffpartsofhydrategrainstofailurethatonlyinvolvesmethanehydratesisimportantforpredictingthebehaviorofgrainboundaryopening.Duringthischange,wecanmeasuregashydrate-bearingsediments.Inthispaper,wehaveshownthatthetensileproportionofthegrainboundarytractionsimulationssuggestingthatthemechanismofshearfailureofincreasesandthatitstabilizeswithgrainsizeonatemperature-polycrystallinemethanehydratesisgrain-sizedependent,withdependentvalue.Wearenotcomfortableestimatingtheatransitionfromlocalshearfailuretolocaltensilefailurewithactivationenergyduringtensileopeningbecausethedataincreasinggrainsize.Thischangeinmechanismcoincideswithbeyondthecrossoverlengtharesparse.However,theorderofacrossoverfromgrainsizestrengtheningtograinsizethedatapointsinthedatacollapse(Figure2D)showsthattheweakeningbehavior,indicatingthatachangefromlocalhigh-temperaturedatapointsstillliebelowthelow-temper-sheartolocaltensilefailureisresponsiblefortheHall−Petchaturedatapointsafterapplyingscalingaxes.Wecanthereforebreakdowninpolycrystallinemethanehydrates.withreasonablecertaintystatethatthisactivationenergywouldhavetobelargerthantheactivationenergycontrolling■thesmall-grainedregime.ASSOCIATEDCONTENTGrainsizeweakeninginpolycrystallinematerialsisoften*sıSupportingInformationexplainedbytheHall−Petcheffect.IntheHall−Petcheffect,TheSupportingInformationisavailablefreeofchargeatdislocationspileupatthegrainboundary,resultingintheyieldhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c00901.strengthfollowinga1/ddependence,wheredisthegrainIllustrationofthechangeofmechanismoffailurewhensize.Whenthegrainsizedisverysmall,ontheorderofafewthegrainsizeincreasesandYoung’smodulusandcrystalunitcells,thepolycrystalcommonlystrengthenswithPoisson’sratioasafunctionoftemperaturefortheforcegrainsize.However,inoursimulations,wedonotfindfieldusedinthepresentstudy(PDF)dislocationspilinguppriortofailure.Rather,alldamageisconcentratedonthegrainboundariesandjunctions,andonly■atcriticalfailuredosomegrainsinthesmall-grainregimeAUTHORINFORMATIONexperienceinteriordamage.Mechanismsotherthandisloca-CorrespondingAuthortionpile-uphavebeenproposedtoexplaingrainsizeHenrikAndersenSveinsson−TheNJORDCentre,weakeningandstrengtheninginnonmetals,suchasceramics,47DepartmentofPhysics,UniversityofOslo,0371Oslo,whereacriticalgrainsizeof18.4nmisfound,whichisNorway;orcid.org/0000-0002-3651-0710;explainedbytherelativefractionsofbulk,grainboundary,andEmail:h.a.sveinsson@fys.uio.notriplejunctionvolumeinapolycrystal.Inthatstudy,suchanηAuthorsanalysiswasconsistentwithagrainsizedependencedwiththeexponentηbeingsmallerthan1/belowthecriticalgrainFulongNing−FacultyofEngineering,ChinaUniversityof2Geosciences,Wuhan,Hubei430074,China;Laboratoryforsize.MarineMineralResources,QingdaoNationalLaboratoryforApolycrystalcanabsorbsimpleshearinvariousways.IfweMarineScienceandTechnology,Qingdao266237,China;assumethatthegrainboundaryslidingisinsensitivetonormalorcid.org/0000-0003-1236-586Xtractionandiscorrectedfortheconfiningpressure,thePinqiangCao−FacultyofEngineering,ChinaUniversityofcompressivenormaltractiononthe(111)grainboundariesGeosciences,Wuhan,Hubei430074,China;SchoolofundercompressionwouldbeequaltothetensilenormalResourceandEnvironmentalEngineering,WuhanUniversitytractiononthe(111)grainboundariesundertension.ofScienceandTechnology,Wuhan,Hubei430081,China;Conversely,ifthegrainboundaryslidingdependedonnormalorcid.org/0000-0003-1469-4288traction,thecompressiveboundarieswouldhaveadifferentBinFang−FacultyofEngineering,ChinaUniversityofratioofsheartonormaltractionduetopreservingshearGeosciences,Wuhan,Hubei430074,Chinatractionintheabsenceofgrainboundarysliding.TheAndersMalthe-Sørenssen−TheNJORDCentre,symmetricandgrain-sizeincreasingtendencyshowninFigureDepartmentofPhysics,UniversityofOslo,0371Oslo,4,partsAandB,indicatesthatthetensionandcompressionNorwaybuiltupfromgrainboundaryslidingplaysanincreasinglyimportantroleasthegrainsizeincreases,thatgrainboundaryCompletecontactinformationisavailableat:slidingislargelyinsensitivetonormaltraction,andthathttps://pubs.acs.org/10.1021/acs.jpcc.1c0090110040https://doi.org/10.1021/acs.jpcc.1c00901J.Phys.Chem.C2021,125,10034−10042

7TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleNotes(19)Liu,Z.;Dai,S.;Ning,F.;Peng,L.;Wei,H.;Wei,C.StrengthTheauthorsdeclarenocompetingfinancialinterest.EstimationforHydrate-BearingSedimentsFromDirectShearTestsofHydrate-BearingSandandSilt.Geophys.Res.Lett.2018,45,715−723.■ACKNOWLEDGMENTS(20)Ning,F.;Yu,Y.;Kjelstrup,S.;Vlugt,T.J.;Glavatskiy,K.H.A.SandA.M.-S.acknowledgesupportfromtheResearchMechanicalPropertiesofClathrateHydrates:StatusandPerspectives.CouncilofNorway,FRINATEKGrantNumber231621.P.C.,EnergyEnviron.Sci.2012,5,6779.B.F.andF.N.acknowledgesupportfromtheNationalKey(21)Durham,W.B.;Kirby,S.H.;Stern,L.A.;Zhang,W.TheResearchandDevelopmentProgramofChinaStrengthandRheologyofMethaneClathrateHydrate.J.Geophys.Res.(2018YFE0126400)andtheDepartmentofNaturalResources2003,108,2182.(22)Shi,Q.;Cao,P.;Han,Z.;Ning,F.;Gong,H.;Xin,Y.;Zhang,ofGuangdongProvinceProject(GDNRC[2020]-047).Z.;Wu,J.RoleofGuestMoleculesintheMechanicalPropertiesofClathrateHydrates.Cryst.GrowthDes.2018,18,6729−6741.■REFERENCES(23)Cao,P.;Wu,J.;Zhang,Z.;Fang,B.;Ning,F.Mechanical(1)Sloan,E.D.FundamentalPrinciplesandApplicationsofNaturalPropertiesofMethaneHydrate:IntrinsicDifferencesfromIce.J.Phys.GasHydrates.Nature2003,426,353−359.Chem.C2018,122,29081−29093.(2)Kvenvolden,K.A.GasHydrates−GeologicalPerspectiveand(24)Sveinsson,H.A.;Malthe-Sørenssen,A.Molecular-ScaleGlobalChange.Rev.Geophys.1993,31,173−187.ThermallyActivatedFracturesinMethaneHydrates:AMolecular(3)Hammerschmidt,E.FormationofGasHydratesinNaturalGasDynamicsStudy.Phys.Chem.Chem.Phys.2019,21,13539−13544.TransmissionLines.Ind.Eng.Chem.1934,26,851−855.(25)Cao,P.;Ning,F.;Wu,J.;Cao,B.;Li,T.;Sveinsson,H.A.;Liu,(4)Boswell,R.IsGasHydrateEnergyWithinReach?Science2009,Z.;Vlugt,T.J.;Hyodo,M.MechanicalResponseofNanocrystalline325,957−958.Ice-ContainedMethaneHydrates:KeyRoleofWaterIce.ACSAppl.(5)Moridis,G.;Collett,T.;Pooladi-Darvish,M.;Hancock,S.;Mater.Interfaces2020,12,14016−14028.Santamarina,C.;Boswell,R.;Kneafsey,T.;Rutqvist,J.;Kowalsky,M.;(26)Stern,L.;Kirby,S.NaturalGasHydrateinSedimentsImagedReagan,M.;etal.Challenges,Uncertainties,andIssuesFacingGasbyCryogenicSEM:InsightsfromLabExperimentsonSyntheticProductionFromGas-HydrateDeposits.SPEReservoirEval.Eng.HydratesasInterpretiveGuides.AGUFallMeetingAbstracts2006,2011,14,76−112.OS33B1699.(6)Phrampus,B.J.;Hornbach,M.J.RecentChangestotheGulf(27)Stern,L.A.;Lorenson,T.D.Grain-scaleImagingandStreamCausingWidespreadGasHydrateDestabilization.NatureCompositionalCharacterizationofCryo-PreservedIndiaNGHP012012,490,527−530.Gas-Hydrate-BearingCores.Mar.Pet.Geol.2014,58,206−222.(7)Boswell,R.;Collett,T.S.CurrentPerspectivesonGasHydrate(28)Chaouachi,M.;Neher,S.H.;Falenty,A.;Kuhs,W.F.TimeResources.EnergyEnviron.Sci.2011,4,1206−1215.ResolvedCoarseningofClathrateCrystals:TheCaseofGas(8)CentralIntelligenceAgencyNaturalGas-ProvedReserves;2016.Hydrates.Cryst.GrowthDes.2017,17,2458−2472.(9)Waite,W.;Santamarina,J.;Cortes,D.;Dugan,B.;Espinoza,D.;(29)Klapp,S.;Klein,H.;Kuhs,W.FirstDeterminationofGasGermaine,J.;Jang,J.;Jung,J.;Kneafsey,T.;Shin,H.;etal.PhysicalHydrateCrystalliteSizeDistributionsUsingHigh-EnergySynchro-PropertiesofHydrate-BearingSediments.Rev.Geophys.2009,47,tronRadiation.Geophys.Res.Lett.2007,34,L13608.RG4003.(30)Wu,J.;Ning,F.;Trinh,T.T.;Kjelstrup,S.;Vlugt,T.J.;He,J.;(10)Andreassen,K.;Hubbard,A.;Winsborrow,M.;Patton,H.;Skallerud,B.H.;Zhang,Z.MechanicalInstabilityofMonocrystallineVadakkepuliyambatta,S.;Plaza-Faverola,A.;Gudlaugsson,E.;Serov,andPolycrystallineMethaneHydrates.Nat.Commun.2015,6,8743.P.;Deryabin,A.;Mattingsdal,R.;etal.MassiveBlow-OutCraters(31)Jacobson,L.C.;Molinero,V.AMethane−WaterModelforFormedbyHydrate-ControlledMethaneExpulsionFromtheArcticCoarse-GrainedSimulationsofSolutionsandClathrateHydrates.J.seafloor.Science2017,356,948−953.Phys.Chem.B2010,114,7302−7311.(11)Hyodo,M.;Li,Y.;Yoneda,J.;Nakata,Y.;Yoshimoto,N.;(32)Liu,H.;Miller,K.FractureToughnessofFresh-WaterIce.J.Nishimura,A.;Song,Y.MechanicalBehaviorofGas-SaturatedGlaciol.1979,22,135−143.MethaneHydrate-BearingSediments.J.Geophys.Res.SolidEarth(33)Benham,P.P.;Crawford,R.J.;Armstrong,C.G.Mechanicsof2013,118,5185−5194.engineeringmaterials;PrenticeHall:1996.(12)Winters,W.;Waite,W.;Mason,D.;Gilbert,L.;Pecher,I.(34)Sveinsson,H.A.MolecularModelingofFractureinMethaneMethaneGasHydrateEffectonSedimentAcousticandStrengthHydrates.M.Sc.Thesis;UniversityofOslo:2015.Properties.J.Pet.Sci.Eng.2007,56,127−135.(35)Jacobson,L.C.;Molinero,V.CanAmorphousNucleiGrow(13)Yun,T.;Santamarina,J.;Ruppel,C.MechanicalPropertiesofCrystallineClathrates?TheSizeandCrystallinityofCriticalClathrateSand,Silt,andClayContainingTetrahydrofuranHydrate.J.Geophys.Nuclei.J.Am.Chem.Soc.2011,133,6458−6463.Res.2007,112,B04106.(36)Gudkovskikh,S.V.;Kirov,M.V.ProtonDisorderandElasticity(14)Miyazaki,K.;Masui,A.;Aoki,K.;Sakamoto,Y.;Yamaguchi,T.;ofHexagonalIceandGasHydrates.J.Mol.Model.2019,25,32.Okubo,S.Strain-rateDependenceofTriaxialCompressiveStrength(37)Guo,Q.;Ghaani,M.R.;Nandi,P.K.;English,N.J.Pressure-ofArtificialMethane-Hydrate-BearingSediment.Int.J.OffshorePolarEng.2010,20,256−264.InducedDensificationofIceIhunderTriaxialMechanical(15)Priest,J.A.;Clayton,C.R.;Rees,E.V.PotentialImpactofGasCompression:DissociationversusRetentionofCrystallinityforHydrateanditsDissociationontheStrengthofHostSedimentintheIntermediateStatesinAtomisticandCoarse-GrainedWaterModels.Krishna−GodavariBasin.Mar.Pet.Geol.2014,58,187−198.J.Phys.Chem.Lett.2018,9,5267−5274.(16)Pinkert,S.;Grozic,J.PredictionoftheMechanicalResponseof(38)Buehler,M.J.AtomisticModelingofMaterialsFailure;Springer:Hydrate-BearingSands.J.Geophys.Res.SolidEarth2014,119,4695−Boston,MA,2008.4707.(39)Takeuchi,F.;Hiratsuka,M.;Ohmura,R.;Alavi,S.;Sum,A.K.;(17)Yoneda,J.;Jin,Y.;Katagiri,J.;Tenma,N.StrengtheningYasuoka,K.WaterProtonConfigurationsinStructuresI,II,andHMechanismofCementedHydrate-BearingSandatMicroscales.ClathrateHydrateUnitCells.J.Chem.Phys.2013,138,124504.Geophys.Res.Lett.2016,43,7442−7450.(40)Plimpton,S.FastParallelAlgorithmsforShort-Range(18)Liu,Z.;Wei,H.;Peng,L.;Wei,C.;Ning,F.AnEasyandMolecularDynamics.J.Comput.Phys.1995,117,1−19.EfficientWaytoEvaluateMechanicalPropertiesofGasHydrate-(41)Shinoda,W.;Shiga,M.;Mikami,M.RapidEstimationofElasticBearingSediments:TheDirectShearTest.J.Pet.Sci.Eng.2017,149,ConstantsbyMolecularDynamicsSimulationUnderConstantStress.56−64.Phys.Rev.B:Condens.MatterMater.Phys.2004,69,16−18.10041https://doi.org/10.1021/acs.jpcc.1c00901J.Phys.Chem.C2021,125,10034−10042

8TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(42)Borodin,E.;Mayer,A.ASimpleMechanicalModelforGrainBoundarySlidinginNanocrystallineMetals.Mater.Sci.Eng.,A2012,532,245−248.(43)VanSwygenhoven,H.;Caro,A.PlasticBehaviorofNanophaseMetalsStudiedbyMolecularDynamics.Phys.Rev.B:Condens.MatterMater.Phys.1998,58,11246−11251.(44)Pinkert,S.;Grozic,J.L.FailureMechanismsinCementedHydrate-BearingSands.J.Chem.Eng.Data2015,60,376−382.(45)Yoneda,J.;Kida,M.;Konno,Y.;Jin,Y.;Morita,S.;Tenma,N.InSituMechanicalPropertiesofShallowGasHydrateDepositsintheDeepSeabed.Geophys.Res.Lett.2019,46,14459−14468.(46)Wu,J.;Skallerud,B.;He,J.;Zhang,Z.Grain-sizeInducedStrengtheningandWeakeningofDislocation-freePolycrystallineGasHydrates.ProcediaIUTAM2017,21,11−16.(47)Ryou,H.;Drazin,J.W.;Wahl,K.J.;Qadri,S.B.;Gorzkowski,E.P.;Feigelson,B.N.;Wollmershauser,J.A.BelowtheHall−PetchLimitinNanocrystallineCeramics.ACSNano2018,12,3083−3094.(48)Craw,L.;Qi,C.;Prior,D.J.;Goldsby,D.L.;Kim,D.MechanicsandMicrostructureofDeformedNaturalAnisotropicIce.J.Struct.Geol.2018,115,152−166.10042https://doi.org/10.1021/acs.jpcc.1c00901J.Phys.Chem.C2021,125,10034−10042

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭