《Deactivation Mechanism Study for Sulfur-Tolerance Enhanced NiO Nanocatalysts of Lean Methane Oxidation - Wu et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCCArticleDeactivationMechanismStudyforSulfur-ToleranceEnhancedNiONanocatalystsofLeanMethaneOxidationJianzhouWu,KaiminDu,JianweiChe,ShihuiZou,LipingXiao,HisayoshiKobayashi,andJieFan*CiteThis:J.Phys.Chem.C2021,125,2485−2491ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Thetreatmentofleanmethanefromsulfur-containingexhaustsofnaturalgasvehiclesisimportant,butchallenging,becauseofthestrongandirreversiblecatalystpoisoningbysulfurspecies.Herein,sulfur-toleranceenhancedNiOnanocatalysts(NiO-SPP)arepreparedviasurfacepolymericphosphate(SPP)modificationofNiONPs,andaself-catalyzedsulfation(SCS)mechanismisproposedtorevealtheinsightsontheboostedsulfur-tolerancecapacity.IntheSCSmechanism,thesulfationprocessisdividedintotwosteps,namely,(1)theinitialsulfationprocessand(2)theself-catalyzedsulfationprocessacceleratedbypreviouslyformedsulfates.StabilityanddurabilitytestsofNiONPsandNiO-SPPrevealthattheimprovedsulfur-tolerancecapacityviaSPPmodificationshouldbeattributedtotworeasons,namely,theexternalreasonastheprotectiononthesurfacestructureofNiO-SPP,andtheinternalreasonasthedecelerationoftheinitialsulfationrate.Specifically,characterizationsandanalysesofthecatalystsbeforeandafterstabilitytestsindicatethattheSPPmodificationcouldefficientlycutdowntheinteractionpossibilityofactivesiteswithsulfurspecies.OnthebasisoftheSCSmechanism,theinitialsulfationrateofNiONPsunderlong-termdeactivationtestsiscalculatedtobe12.8timesthatofNiO-SPP,andtheself-catalyzedsulfationrateconstantforNiONPsistwicethatofNiO-SPP.TheSPPmodificationofcatalystsandtheSCSmechanismprovideareferencefortheimprovementofcatalystdurabilityontheperspectiveofdeactivation.■INTRODUCTIONprocessofPdMOCsasanexample,theactivesitePdOcould11Theuseofnaturalgasasanenergysourceislikeadouble-besulfatedintopalladiumsulfatebySO2,andthesulfationedgedsword.Methane,themaincomponentofnaturalgas,isprocesswouldbegreatlyenhancedwiththepresenceof12thehydrocarboncompoundwithhighestH/Cratio,whichsteam.ThedurabilityofMOCsinthepresenceofbothSO2makesnaturalgasacleanfuelcomparedtooilandcoal.1,2andH2Oispathetic,andenhancementoverthesulfur-However,leakandemissionofunburnedmethanecanleadtotolerancecapacityisofurgencyforpotentialindustrialpotentialdamagetotheenvironment.3−6Forinstance,theapplications.applicationofnaturalgasasvehiclesfuelcanrelativelycutInconsiderationofthecostofMOCs,variousnon-nobledowntheemissionofcarbondioxide,butmethaneinthetransitionmetaloxides(suchasFe,Co,Ni,Mn,Zr,Ce,andDownloadedviaUNIVOFPRINCEEDWARDISLANDonMay16,2021at12:41:18(UTC).13−20exhaustcouldpossiblyleadtoseveregreenhouseeffectduetotheircompositeswithacomparisonchartinTableS1ofSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.itsexceptionalcapacityintrappingheatescapingfromthetheSupportingInformation)havebeenstudiedforcomplete7earth.CH4oxidation.Amongthem,NiOhasexhibitedremarkableThetreatmentoftheleanmethaneintheexhaustisof21−2425performance,butitssulfurresistancecapacityislow.significance,andcatalyticoxidationwithtransitionmetalFormetal-basedMOCs,toslowdownthepoisoningprocess,acatalysts,suchasnickeloxide(NiO)andpalladium(Pd),isanchangeofthechemicalsurroundingsforactivesitesisan8efficientapproach.Thecatalystsforexhausttreatmentusuallyefficientapproach,includingadjustmentofsupportsandworkunderconditionsof(A)lowtemperature(typicallylessfunctionalizationoftheactivesites.8,26−29Recently,surfacethan500−550°C),(B)leanmethane(500−1000ppm),(C)ligandmodificationhasemergedasaneffectiveandelegantlargeamountofwatervapor(10−15%)andCO2(15%),(D)strategytotunethesubstratesandproductsadsorptionlargeexcessofoxygen,and(E)thepresenceofSOx(∼1ppm)9andNOx.Sulfurdioxide(SO2),generatedbythecombustionofsulfurcomponentsinnaturalgas(includinghydrogenReceived:December14,2020sulfideandthiols10),willpoisontheactivesitesofmethaneRevised:January12,2021oxidationcatalysts(MOCs)andshrinkthecatalyticcapacityofPublished:January21,2021MOCs.ThepoisoningprocessofMOCsbySO2canbeconsideredachemicalreactionbetweenSO2andactivesites,leadingtotheformationofsulfates.Takingthesulfation©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.0c111172485J.Phys.Chem.C2021,125,2485−2491
1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure1.MethanecatalyticoxidationactivityofNiONPsandNiO-SPPwithcorrespondingTEMimages.Scalebar,50nm.Testconditions:150mgofcatalysts,0.2%CH,6%O,93.8%N,andGHSV40000mL·g−1·h−1.422cat.propertiesofmetallicnanoparticlesthroughpotentiallyalteringfor2hwillleadtoNiONPs,whicharethesubstratesfor30−34thestericandelectronicpropertyofthecatalystsurface.furtherSPPmodification.TheSPPmodificationprocessis39Inthiswork,NiOnanoparticles(NPs)arepreparedthroughbasedonthepreviouswork.Typically,0.2gofNiONPswasthermaldecompositionofnickeloxalatedihydrateasMOCs,dispersedinto100mLofdeionizedwater,followedbythewhicharefurthersurfacepolymericphosphate(SPP)modifiedadditionofHNO3toadjustthepHvalueofthesolutionto1.toNiO-SPP.TheperformanceanddurabilityofthetwoThesuspensionwasstirredatroomtemperaturefor2hbeforecatalystsaretestedunderthreedifferentconditions.Aself-centrifugation.Then,theprecipitatewasdispersedinto100catalyzedsulfation(SCS)mechanismisappliedtodiscussthemLofNaH2PO4·2H2Oaqueoussolution(themolarratioofPdeactivationprocessofNiONPsduringthecatalyticleantoNiwas1.2:1).AftervigorouslystirringatroomtemperaturemethaneoxidationprocesswithSO2.Themechanismisfor10h,solidproductwasobtainedbycentrifugation.AfterproposedbasedontheFinkeandWatzkytwo-stepnucleationwashingwithdeionizedwaterandethanol,theproductwasmechanism(FWmechanism),aclassicalnanoparticledriedat40°Cinvacuumandfurthercalcinedat500°Cinthe35−38nucleationandgrowthmodel.Thesulfationprocessofairfor2htoobtaintheSPPmodifiedNiONPs,whichisNiONPscanbedividedintotwosteps,namely,(1)theinitialdenotedasNiO-SPP.sulfationprocessand(2)theself-catalyzedsulfationprocessCharacterization.Thefollowingtechniqueswereusedtoacceleratedbypreviouslyformedsulfates.Twokineticcharacterizesamplesbeforeoraftercatalysis.parameterscanbeabstractedviathemechanism,kiandks,(a)X-raydiffraction(XRD),recordedonaRigakuUltimawhicharetheapparentsulfationrateconstantforthetwoIVdiffractometerwithCuKαradiation(40kV,40mA,steps.AlthoughtheSPPmodificationcutsdowntheactivityof10°·min−1from20°to70°).NiONPs,thesulfur-tolerancecapacityislargelyimproved.(b)Transmissionelectronmicroscopy(TEM),performedDetailedcharacterizationsandanalyses,includingFT-IR,XPS,onaHitachiHT7700,withanaccelerationvoltageofTEM,SEM,andDFTcalculations,revealtheprotectionof100kV.SPPmodificationagainstsulfur.Long-termdeactivationtests(c)Scanningtransmissionelectronmicroscopy(SEM)andforthecatalystsindicatethedecelerationoftheinitialsulfationenergydispersiveX-ray(EDX)spectroscopemapping,ratebySPPmodification.performedonaHitachiSU-8010equippedwithEDX.(d)Fourier-transforminfrared(FT-IR)spectra,recordedon■EXPERIMENTALSECTIONaNicoletiS10FT-IRspectrometer.Materials.Nickel(II)oxalatedihydrate(NiC2O4·2H2O,(e)X-rayphotoelectronspectroscopy(XPS),performedon99%)andnickelsulfatehexahydrate(NiSO4·6H2O,99.9%aVGScientificESCALABMarkIIspectrometermetalsbasis)wereacquiredfromAladdinIndustrialCo.,equippedwithtwoultrahighvacuum(UHV)chambers.China.Sodiumdihydrogenphosphatedihydrate(NaH2PO4·AllbindingenergieswerereferencedtotheC1speakat2H2O,AR)andnitricacid(HNO3,AR)werepurchasedfrom284.8eVofthesurfaceadventitiouscarbontocorrectSinopharmChemicalReagentCo.,Ltd.,China.Awatertheshiftcausedbythechangeeffect.purificationsystem(Milli-QReference,Millipore,Merck)was(f)Thermogravimetricanalysis(TGA),performedonaappliedtoproduceultrapurewaterwitharesistivityabove1.82Mettler-ToledoTGA/DSC11100SFinstrument.Typi-×105Ω·mat25°C.Allreagentswereusedwithoutfurthercally,4mgofthesamplewasheatedfromroomtemperatureto800°Catarateof10°C·min−1in50purification.Allthegasesinvolvedinthecatalytictests,mL·min−1ofOflow.includingCH4/N2(1mol%methane),O2/N2(20mol%O2),2highpurityN2(99.999%),SO2/N2(100ppmofSO2),andH2ActivityTest.Catalytictestsofmethanecombustionunder(99.999%),werepurchasedfromHangzhouJingongwuziconventionalconditionswereperformedinafixed-bedquartzCo.,Ltd.,China.reactor(8mmi.d.,450mmlong)operatingatatmospherePreparationofNiONPsandTheirSurfacePolymericpressure.Thefeedflowwas100mL·min−1with0.2vol%CH,4Phosphate(SPP)Modification.NiONPsweresynthesized6vol%O2andN2.Theywereconductedwith150mgofbythethermaldecompositionofcommercialnickeloxalate.catalystsdilutedwithquartzsand(80−100mesh)tomakeupThecalcinationofnickeloxalatedihydrateat500°Cintheaira3cmlongbed(1.5mLvolume).Thetemperatureofthe2486https://dx.doi.org/10.1021/acs.jpcc.0c11117J.Phys.Chem.C2021,125,2485−2491
2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure2.(A)StabilitytestsofNiONPsandNiO-SPPwithTEMimagesafterthetests.Scalebar,50nm.Testconditions:150mgofcatalysts,reactiontemperature500°C;N:conventionalconditions,0.2%CH4,6%O2,93.8%N2;W:H2Oconditions,0.2%CH4,6%O2,15%H2O,and78.8%N;S:SOconditions,0.2%CH,6%O,15%HO,1ppmofSO,and78.8%N;GHSV40000mL·g−1·h−1.(B)FT-IRand(C)XPS2242222cat.(Ni2p1/2,O1s,andS2p)analysisoftheas-synthesizedcatalystsandafterstabilitytests.catalyticbedwasmeasuredwithathermocouple.Thefeedand■RESULTSANDDISCUSSIONthereactionproductswereanalyzedonlinewithagasPerformanceofNiO-BasedCatalysts.CatalystsofNiOchromatograph(GC).NPs(preparedviathermaldecompositionofnickeloxalate)StabilityTest.TheapparatususedforstabilitytestistheandNiO-SPP(preparedviaSPPmodificationofas-synthesizedsametothatfortestingtheactivityofthecatalysts.Indetail,NiONPs)weretestedtodeterminetheactivityandstability.150mgofcatalystswasinvolvedwithareactiontemperatureatTheactivitiesofthecatalyststowardleanmethaneoxidationareshowninFigure1.A150mgportionofeachcatalystwas500°C.Theperformanceofcatalystswasevaluatedinitiallyused,andaschematicillustrationofthereactionapparatusisinunderconventionalconditions(100mL·min−1feedwith0.2%FigureS1oftheSupportingInformation(SI).NiONPsCH4,6%O2andN2)for2h,followedbytheintroductionofexhibitbetteractivity,indicatingthattheSPPmodificationHO(HOconditions,100mL·min−1feedwith0.2%CH,6%224succeeded.Indetail,the10%CH4conversiontemperatureO2,15%H2OandN2)for2h.Afterward,1ppmofSO2was(T10)forNiONPsisabout300°C,T50350°C,andT90400introducedintothereactionsystem(SO2conditions,100mL·°C,while,forNiO-SPP,theT10isabout350°C,T50400°C,min−1feedwith0.2%CH4,6%O2,15%H2O,1ppmofSO2andT90445°C.AccordingtotheTEMimagesofthetwoas-synthesizedcatalysts,thereisnoobviousdifferenceinparticleandN2),andthetestlastedfor8h.Forthelong-termappearanceandsize.TheSPPmodificationshouldbeofathindeactivationtest,thecatalystsunderwentSO2conditions(100coverageofphosphateovertheNiONPssurfacewithpartialmL·min−1feedwith0.2%CH,6%O,15%HO,1ppmof422activesitescovered,whichissupportedbycharacterizationsinSO2andN2)forover24huntiltheactivityislow.ThegasFigureS2,includingFT-IRspectra,XPSspectra,GTAresults,hourlyspacevelocity(GHSV)foreverytestis40000mL·andXRDpatterns.Becauseofthelossofsomeactivesites,the−1−1catalyticactivitydropsafterthemodification.gcat.·h.Thestabilitytestisinthesequenceofconventional-Thetwocatalystsfurtherunderwentstabilitytests(FigureH2O-SO2conditions.Thisisdesignedtoensurethatthe2).Similartotheconditionsfortheactivitytest,after150mgactivityofcatalystsunderconventionalandH2Oconditionsisofcatalystswasloadedinthereactionapparatus,thecatalystsstable,andtheactivitylossunderSconditionsismainlycausedweretestedat500°Cinconventionalconditions(denotedasbytheinteractionofSO2andNiO.Nconditions)for2h,H2Oconditions(denotedasW2487https://dx.doi.org/10.1021/acs.jpcc.0c11117J.Phys.Chem.C2021,125,2485−2491
3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure3.SEMimagesandEDX-mappingresultsofthespent(A)NiONPsand(B)NiO-SPP.Scalebar,2μm.conditions)for2h,andSO2conditions(denotedasSpolymericphosphate.Thesurfacechemicalcompositionsofallconditions)for8h,sequentially.AsshowninFigure2A,withinthesesamplesarelistedinTableS2.Moreover,asshownintheinitial2h(theNconditions),χismaintainedat99%.AfterTableS3,densityfunctionaltheory(DFT)calculationsrevealtheintroductionofH2O(theWconditions),χshrinksrapidlythattheinteractionbetweensulfuroxidespecies(SO2andtoabout90%,whichshouldbeattributedtotheformationofSO3)andthesurfacesofNiONPsismuchstrongerthanthatsurfacehydroxylgroupsontheactivesites.Furthermore,theofNiO-SPP.Hence,thealmostunchangedsurfacestatusofintroductionofSO2(theSconditions)leadstoasignificantNiO-SPPshouldbenotedastheexternalcauseforsulfur-lossincatalyticactivityonNiONPsafter8hstabilitytest,tolerancecapacity.whilethedeactivationforNiO-SPPisrelativelysmall.ThecatalystswerefurtheranalyzedviaSEMandEDX-ComparingtheTEMimagesofthespentcatalystswithmapping.AsshowninFigure3,forspentNiO-SPP,thesignalthoseofas-synthesizedcatalysts,NiONPssufferedsevereofSisveryweakandScanbeconsiderednonexistenceinthesinteringduringthedeactivationprocess,whilethesizeofsample,whilethatsignalisquiteclearforNiONPs.InNiO-SPPhardlychanged.AsshowninFigureS4,NiSO4iscombinationwithalltheevidenceabove,itcanbestatedthatinactivetowardtheleanmethaneoxidation.Probably,itisthebettersulfur-tolerancecapacityforNiO-SPPistheeasiertoformsulfatesovertheNiONPssurfacenakedtoSO2,preventionofSPPtowardactiveNiOfromSO2:reducingleadingtotheenlargementofcatalysts,whilethesulfationthecontactpossibilitybetweenNiOandSO2,deacceleratingprocesswouldbedeceleratedbytheSPPmodification.thesulfationprocess,andthusprotectingthecatalyst.MoreexaminationshavebeenperformedtoanalyzetheProposaloftheSelf-CatalyzedSulfation(SCS)possiblemechanismforthebettersulfur-tolerancecapacityofMechanismforCatalystDurabilityTests.FromtheNiO-SPPindetail.OnthebasisoftheFT-IRspectraofNiOperspectiveofnanoparticlegeneration,thedeactivationNPsbeforeandafterstabilitytests,spentNiONPsexhibitanprocessofNiONPsduringthecatalyticoxidationofleanobvioussurfacesulfate(SO2−)peakat1080cm−1(FiguremethanecanbeconsideredasthegrowthprocessofNiSO442B).40ForNiO-SPP,duetothatthepeaksofphosphorusnanoparticleswithNiONPsasprecursor.Onthebasisofthe−12−FWmechanism,thesulfationofNiONPsisconsideredatwo-(800−1200cm)overlappedthepeaksofSO4,itisdifficultstepreaction.Asshowninfollowingexpressions,step1isthetotellthesurfacestatuschangeofNiO-SPPviaFT-IR,andXPSanalysisisutilized.Figure2CdisplaystheNi2p,O1s,andformationofNiSO4fromNiOwithSO2andO2.WithinthisS2pXPSspectraofas-synthesizedandspentNiONPsandperiod,theapparentreactionrateconstantisdenotedask1,whichistheconstantofthenucleationprocess.ThenucleationNiO-SPP.Foras-synthesizedNiONPs,theNi2ppeakat3+processforthecatalystsulfationistheinitialformationof855.5eVisattributedtoNispecies,andthepeakat853.7eV2+41NiSO4.Step2isaself-catalyzedreaction,wherethepreviouslytoNispeciesalongwithitssatellitepeakat860.8eV.The−generatedNiSO4instep1actsasacatalystacceleratingtheO1speakat530.8eVisassignedtoOspecies,andthepeak2−42subsequentsulfationprocedure,leadingtotherapidat529.1eVtoOspecies.Noticeably,allthreepeaksofNideactivationoftheNiOcatalyst.Similarly,therateconstant2pforspentNiONPsafterstabilitytestupshift,andasimilark2istreatedasakineticparameterofnanoparticlegrowth.upshiftisobservedforO1s,indicatingtheformationofsulfatespeciesandtheretractionofelectronsfromNiO.ForNiO-Step1NiO++→SO22ONiSO41k(1a)SPP,allpeaksofNi2p(855.8,853.9,860.9eV)andO1s(531.0,529.4eV)aremaintained.AccordingtotheS2pXPSStep2NiO+++→SO22ONiSO4NiSO42kspectra,itisclearthatsulfurspeciesarepresentintheformof(1b)sulfateswithbindingenergyintheregionof167−171eVforItshouldbenoticedthatthetwostepsoftheself-catalyzed43spentNiONPs,whilenoobvioussignalforspentNiO-SPPsulfationprocessofNiONPsiscontinuousanddependent.arises.ThepeaksofNi2pandO1sarealsoupshifted(0.2eVOncethereisNiSO4generatedoverthesurfaceofNiONPs,upshiftinNi2pand0.3upshiftinO1s)afterSPPthecatalyzedformationprocessofNiSO4isstarted,andthemodification,revealingastronginteractionbetweenNiOandnewlyformedNiSO4wouldbefurtherinvolvedinthe2488https://dx.doi.org/10.1021/acs.jpcc.0c11117J.Phys.Chem.C2021,125,2485−2491
4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure4.Long-termdurabilitytestforNiONPsandNiO-SPPunderSconditionswithfittedtrendsbasedontheSCSmechanism.Testconditions:150mgofcatalysts,reactiontemperature500°C,0.2%CH4,6%O2,15%H2O,1ppmofSO2,and78.8%N2,andGHSV40000mL·g−1·h−1.Table#1displaysfittedparametersbasedontheSCSmechanism,andTable#2showsthedeactivationtimeforcatalystsreachingthecat.99%,90%,50%,10%,and1%oftheinitialactivity.generationprocess.ItisdifficultandirrationaltodividetheThecatalystsdeactivationplotsareinFigure4withtrendstwosteps,theinitialsulfationandthesubsequentsulfationfittedbytheSCSmechanism.Accordingtothefittingresults,processes,intotwoseparatedprocedures.OnceanyexposedtheSCSmechanismisofgoodfitnesstodescribetheNiOonthesurfaceofcatalystsissulfated,thedeactivationrelationshipbetweenχandtduringthesulfationprocessofprocesswouldstop,includingboththeinitialsulfationandthecatalysts.IncomparisonwithNiONPs,thebettersulfur-subsequentsulfation.Moreover,itisworthnotingthat,tolerancecapacityforNiO-SPPshouldbeattributedtothealthoughH2Oisnotincludedineq1,H2Oactsascatalystmuchsmallervalueofki,namely,thattheformationofsulfateandacceleratesthesulfationprocess,anditsinfluenceshouldovertheNiO-SPPsurfaceismoredifficultthanthatofNiObeconsideredaspartofthesulfationrateconstants.NPsduetothesurfaceprotectionviaSPPmodification.Accordingly,thereactionkineticsforthesulfationofNiOSpecifically,theinitialsulfationrateofNiONPsisabout12.8NPscanbedescribedaseq2timesthatofNiO-SPP,andtheself-catalyzedsulfationrateconstantforNiONPsisabouttwicethatofNiO-SPP.Besides,kk120+[]NiOdeactivationtimeforthecatalystsreachingthe99%,90%,50%,[NiO]=tk1ek(Nkk12+[]×iO0)t+10%,and1%oftheinitialactivityiscalculatedbasedonthe[]NiO02(2)SCSmechanism.TheSPPmodificationcanprovideabout3.3timesthedurability(activitydropsto1%oftheinitialactivity)where[NiO]tand[NiO]0aretheconcentrationsofsurfaceimprovementforthecatalyst.ThefarsmallerinitialsulfationactiveNiOatreactiontimesoftand0,andtisthetimeonstream.TheconcentrationofsurfaceactiveNiOreferstotherateofNiO-SPPshouldberegardedastheinternalcauseforratiobetweenthemolenumberofactiveNiOonthecatalystsulfur-tolerancecapacity.Thus,toimprovethesulfur-tolerancesurfaceandthemolenumberoftotalNiO.Tomakeeq2capacity,modificationstowardtheenhancementofcatalystsappropriateforthedescriptionofthepracticalmethanedesorptionabilityonSO2andtheinhibitionofinitialsulfationoxidationprocess,eq3isderivedrateshouldbeemphasized.kkis+χ0■χ=CONCLUSIONStkiek()kkis+×χ0t+TheactivityanddurabilityofNiONPsandNiO-SPPforleanχs(3)0methaneoxidationhavebeentestedtogaininsightsintotheenhancedsulfur-tolerancecapacityofNiO-SPP,andtheSCSwhereχistheconversionofmethane,χtandχ0refertotheconversionattand0,kiistheapparentinitialsulfationratemechanismisproposedandappliedtoexplainthephenom-constant,andksistheapparentself-catalyzedsulfationrateenon.ThesulfationprocessofNiOnanoparticlescanbeconstant.Herein,eq3isdenotedastheself-catalyzedsulfationtreatedasaprocedureofatwo-stepNiSO4nanoparticle(SCS)mechanism.Detaileddiscussiononthewholegrowth,whereinitiallyformedNiSO4wouldbeinvolvedinthederivationofequationsaboveisintheSI.continuoussulfation,andacceleratesthedeactivationprocessToacquireinsightsintothemechanismofsulfur-tolerancebyactingasacatalyst.Characterizationsandanalyses,boostviaSPPmodification,theas-synthesizedcatalystsfurtherincludingFT-IR,XPS,TEM,SEM,DFTcalculations,etc.,underwentlong-termdeactivationtestsunderSconditionsaremadeonthestructuraltransformationandtheperformancewiththeproposedSCSmechanism.Typically,150mgofthechangeofcatalystsunderSconditions.Ithasbeenuncoveredcatalystswasloadedintothereactionapparatus,andinitiallythatSPPmodificationcanprovidesulfur-tolerancecapacityfortheprocessofmethaneoxidationproceededundertheWNiONPs.Theexternalreasonfortheenhancedsulfur-conditions.Afterreactingfor2h,once1ppmofSO2wastolerancecapacityistheprotectiononthesurfacestructureofintroducedintothesystem,thedatarecordingofmethaneNiO-SPP,andtheinternalreasonisthedecelerationoftheconversionwasstarted,andthereactionwascontinueduntilinitialsulfationrate.TheSPPmodificationprovidesastrategytheconversionwaslow.toslowdownthesulfationprocessofNiO-basedcatalysts,and2489https://dx.doi.org/10.1021/acs.jpcc.0c11117J.Phys.Chem.C2021,125,2485−2491
5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticletheSCSmechanismoffersapotentialguidelineforthe(4)Nisbet,E.G.;Dlugokencky,E.J.;Bousquet,P.Methaneonthedurabilityimprovementofcatalysts.RiseAgain.Science2014,343,493−495.(5)LeQueré,C.;Peters,G.P.;Andres,R.J.;Andrew,R.M.;Boden,́■T.A.;Ciais,P.;Friedlingstein,P.;Houghton,R.A.;Marland,G.;ASSOCIATEDCONTENTMoriarty,R.;etal.GlobalCarbonBudget2013.EarthSyst.Sci.Data*sıSupportingInformation2014,6,235−263.TheSupportingInformationisavailablefreeofchargeat(6)Alvarez,R.A.;Pacala,S.W.;Winebrake,J.J.;Chameides,W.L.;https://pubs.acs.org/doi/10.1021/acs.jpcc.0c11117.Hamburg,S.P.GreaterFocusNeededonMethaneLeakagefromDerivationoftheSCSmodel,characterizations(FT-IR,NaturalGasInfrastructure.Proc.Natl.Acad.Sci.U.S.A.2012,109,XPS,TGA,andXRD)ofNiONPsandNiO-SPPwith6435−6440.dataanalysis,DFTcalculationsoftheadsorptionof(7)Monai,M.;Montini,T.;Gorte,R.J.;Fornasiero,P.Catalyticsulfuroxidespeciesoverthesurfacesofcatalysts,OxidationofMethane:PdandBeyond.Eur.J.Inorg.Chem.2018,2018,2884−2893.schematicillustrationoftheoxidationapparatus,and(8)Chen,J.;Arandiyan,H.;Gao,X.;Li,J.RecentAdvancesinactivitytestofNiSO4towardleanmethaneoxidationCatalystsforMethaneCombustion.Catal.Surv.Asia2015,19,140−(PDF)171.(9)Gelin,P.;Primet,M.CompleteOxidationofMethaneatLoẃ■AUTHORINFORMATIONTemperatureoverNobleMetalBasedCatalysts:AReview.Appl.CorrespondingAuthorCatal.,B2002,39,1−37.JieFan−KeyLabofAppliedChemistryofZhejiangProvince,(10)Mokhatab,S.;Poe,W.A.;Mak,J.Y.Chapter1-NaturalGasFundamentals.InHandbookofNaturalGasTransmissionandDepartmentofChemistry,ZhejiangUniversity,HangzhouProcessing,4thed.;Mokhatab,S.,Poe,W.A.,Mak,J.Y.,Eds.;Gulf310027,China;orcid.org/0000-0002-8380-6338;ProfessionalPublishing:Houston,2019;pp1−35.Email:jfan@zju.edu.cn(11)Monai,M.;Montini,T.;Melchionna,M.;Duchoň,T.;Kuś,P.;̌Chen,C.;Tsud,N.;Nasi,L.;Prince,K.C.;Veltruska,K.;etal.ThéAuthorsEffectofSulfurDioxideontheActivityofHierarchicalPd-BasedJianzhouWu−KeyLabofAppliedChemistryofZhejiangCatalystsinMethaneCombustion.Appl.Catal.,B2017,202,72−83.Province,DepartmentofChemistry,ZhejiangUniversity,(12)Mowery,D.L.;McCormick,R.L.DeactivationofAluminaHangzhou310027,China;orcid.org/0000-0002-3131-SupportedandUnsupportedPdoMethaneOxidationCatalyst:The6206EffectofWateronSulfatePoisoning.Appl.Catal.,B2001,34,287−KaiminDu−KeyLabofAppliedChemistryofZhejiang297.Province,DepartmentofChemistry,ZhejiangUniversity,(13)Teng,F.;Chen,M.;Li,G.;Teng,Y.;Xu,T.;Hang,Y.;Yao,W.;Hangzhou310027,ChinaSanthanagopalan,S.;Meng,D.D.;Zhu,Y.HighCombustionActivityJianweiChe−KeyLabofAppliedChemistryofZhejiangofCH4andCatalluminescencePropertiesofCOOxidationoverProvince,DepartmentofChemistry,ZhejiangUniversity,PorousCo3O4Nanorods.Appl.Catal.,B2011,110,133−140.Hangzhou310027,China(14)Ye,Y.;Zhao,Y.;Ni,L.;Jiang,K.;Tong,G.;Zhao,Y.;Teng,B.FacileSynthesisofUniqueNiONanostructuresforEfficientlyShihuiZou−KeyLabofAppliedChemistryofZhejiangCatalyticConversionofCH4atLowTemperature.Appl.Surf.Sci.Province,DepartmentofChemistry,ZhejiangUniversity,2016,362,20−27.Hangzhou310027,China;orcid.org/0000-0001-5564-(15)Hu,L.;Peng,Q.;Li,Y.SelectiveSynthesisofCo3O44151NanocrystalwithDifferentShapeandCrystalPlaneEffectonLipingXiao−KeyLabofAppliedChemistryofZhejiangCatalyticPropertyforMethaneCombustion.J.Am.Chem.Soc.2008,Province,DepartmentofChemistry,ZhejiangUniversity,130,16136−16137.Hangzhou310027,China(16)Choudhary,V.R.;Uphade,B.S.;Pataskar,S.G.;Keshavaraja,HisayoshiKobayashi−DepartmentofChemistryandA.Low-TemperatureCompleteCombustionofMethaneoverMn-,MaterialsTechnology,KyotoInstituteofTechnology,KyotoCo-,andFe-StabilizedZrO2.Angew.Chem.,Int.Ed.Engl.1996,35,606-8585,Japan2393−2395.(17)Bozo,C.;Guilhaume,N.;Garbowski,E.;Primet,M.Completecontactinformationisavailableat:CombustionofMethaneonCeO2−ZrO2BasedCatalysts.Catal.https://pubs.acs.org/10.1021/acs.jpcc.0c11117Today2000,59,33−45.(18)Li,J.;Liang,X.;Xu,S.;Hao,J.CatalyticPerformanceofNotesManganeseCobaltOxidesonMethaneCombustionatLowTheauthorsdeclarenocompetingfinancialinterest.Temperature.Appl.Catal.,B2009,90,307−312.(19)Zhang,Y.;Qin,Z.;Wang,G.;Zhu,H.;Dong,M.;Li,S.;Wu,■ACKNOWLEDGMENTSZ.;Li,Z.;Wu,Z.;Zhang,J.;etal.CatalyticPerformanceofMnOx−NiOCompositeOxideinLeanMethaneCombustionatLowThisworkwassupportedbytheNationalNaturalScienceTemperature.Appl.Catal.,B2013,129,172−181.FoundationofChina(91545113,91845203,21802122,(20)Ren,Z.;Botu,V.;Wang,S.;Meng,Y.;Song,W.;Guo,Y.;21703050)andShellGlobalSolutionsInternationalB.V.Ramprasad,R.;Suib,S.L.;Gao,P.X.MonolithicallyIntegratedSpinel(PT71423,PT74557).MxCo3‑xO4(M=Co,Ni,Zn)NanoarrayCatalysts:ScalableSynthesisandCationManipulationforTunableLow-TemperatureCH4and■REFERENCESCOOxidation.Angew.Chem.2014,126,7351−7355.(1)Howarth,R.W.;Ingraffea,A.;Engelder,T.ShouldFracking(21)Zhang,X.;House,S.D.;Tang,Y.;Nguyen,L.;Li,Y.;Opalade,Stop?Nature2011,477,271−275.A.A.;Yang,J.C.;Sun,Z.;Tao,F.F.CompleteOxidationofMethane(2)Raj,B.A.MethaneEmissionControl.JohnsonMattheyTechnol.onNiONanoclustersSupportedonCeO2NanorodsthroughRev.2016,60,228−235.SynergisticEffect.ACSSustainableChem.Eng.2018,6,6467−6477.(3)Schmale,J.;Shindell,D.;vonSchneidemesser,E.;Chabay,I.;(22)Zou,X.;Rui,Z.;Ji,H.Core-ShellNiO@PdONanoparticlesLawrence,M.AirPollution:CleanupOurSkies.Nature2014,515,SupportedonAluminaasanAdvancedCatalystforMethane335−337.Oxidation.ACSCatal.2017,7,1615−1625.2490https://dx.doi.org/10.1021/acs.jpcc.0c11117J.Phys.Chem.C2021,125,2485−2491
6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(23)Ruckenstein,E.;HangHu,Y.MethanePartialOxidationover(42)Rao,C.;Vijayakrishnan,V.;Kulkarni,G.;Rajumon,M.ANiO/MgOSolidSolutionCatalysts.Appl.Catal.,A1999,183,85−92.ComparativeStudyoftheInteractionofOxygenwithClustersand(24)Thaicharoensutcharittham,S.;Meeyoo,V.;Kitiyanan,B.;Single-CrystalSurfacesofNickel.Appl.Surf.Sci.1995,84,285−289.Rangsunvigit,P.;Rirksomboon,T.CatalyticCombustionofMethane(43)Madec,L.n.;Xia,J.;Petibon,R.m.;Nelson,K.J.;Sun,J.-P.;overNiO/Ce0.75Zr0.25O2Catalyst.Catal.Commun.2009,10,673−Hill,I.G.;Dahn,J.R.EffectofSulfateElectrolyteAdditiveson677.LiNi1/3Mn1/3Co1/3O2/GraphitePouchCellLifetime:Correlation(25)Ordoń̃ez,S.;Paredes,J.R.;Díez,F.V.SulphurPoisoningofbetweenXPSSurfaceStudiesandElectrochemicalTestResults.J.TransitionMetalOxidesUsedasCatalystsforMethaneCombustion.Phys.Chem.C2014,118,29608−29622.Appl.Catal.,A2008,341,174−180.(26)Colussi,S.;Arosio,F.;Montanari,T.;Busca,G.;Groppi,G.;Trovarelli,A.StudyofSulfurPoisoningonPd/Al2O3andPd/CeO2/Al2O3MethaneCombustionCatalysts.Catal.Today2010,155,59−65.(27)Venezia,A.M.;DiCarlo,G.;Pantaleo,G.;Liotta,L.F.;Melaet,G.;Kruse,N.OxidationofCH4overPdSupportedonTiO2-DopedSiO2:EffectofTi(IV)LoadingandInfluenceofSO2.Appl.Catal.,B2009,88,430−437.(28)Gremminger,A.T.;PereiradeCarvalho,H.W.;Popescu,R.;Grunwaldt,J.-D.;Deutschmann,O.InfluenceofGasCompositiononActivityandDurabilityofBimetallicPd-Pt/Al2O3CatalystsforTotalOxidationofMethane.Catal.Today2015,258,470−480.(29)Wilburn,M.S.;Epling,W.S.SulfurDeactivationandRegenerationofMono-andBimetallicPd-PtMethaneOxidationCatalysts.Appl.Catal.,B2017,206,589−598.(30)Niu,Z.;Li,Y.RemovalandUtilizationofCappingAgentsinNanocatalysis.Chem.Mater.2014,26,72−83.(31)Liu,P.;Qin,R.;Fu,G.;Zheng,N.SurfaceCoordinationChemistryofMetalNanomaterials.J.Am.Chem.Soc.2017,139,2122−2131.(32)Chen,G.;Xu,C.;Huang,X.;Ye,J.;Gu,L.;Li,G.;Tang,Z.;Wu,B.;Yang,H.;Zhao,Z.;etal.InterfacialElectronicEffectsControltheReactionSelectivityofPlatinumCatalysts.Nat.Mater.2016,15,564−569.(33)Fedorov,A.;Liu,H.-J.;Lo,H.-K.;Coperet,C.Silica-SupportedCuNanoparticleCatalystsforAlkyneSemihydrogenation:EffectofLigandsonRatesandSelectivity.J.Am.Chem.Soc.2016,138,16502−16507.(34)Wu,B.;Huang,H.;Yang,J.;Zheng,N.;Fu,G.SelectiveHydrogenationofA,B-UnsaturatedAldehydesCatalyzedbyAmine-CappedPlatinum-CobaltNanocrystals.Angew.Chem.,Int.Ed.2012,51,3440−3443.(35)Watzky,M.A.;Finke,R.G.TransitionMetalNanoclusterFormationKineticandMechanisticStudies.ANewMechanismWhenHydrogenIstheReductant:Slow,ContinuousNucleationandFastAutocatalyticSurfaceGrowth.J.Am.Chem.Soc.1997,119,10382−10400.(36)Özkar,S.;Finke,R.G.NanoparticleNucleationIsTermolecularinMetalandInvolvesHydrogen:EvidenceforaKineticallyEffectiveNucleusofThree{IrH·PWNbO}6−in32X215362Ir(0)NanoparticleFormationfrom[(1,5-COD)IrI·nPWNbO]8−PlusDihydrogen.J.Am.Chem.Soc.2017,139,2153625444−5457.(37)Wu,J.;Qian,H.;Lu,L.;Fan,J.;Guo,Y.;Fang,W.InfluenceofReductionKineticsonthePreparationofWell-DefinedCubicPalladiumNanocrystals.Inorg.Chem.2018,57,8128−8136.(38)Wu,J.;Chen,X.;Fan,J.;Guo,Y.;Fang,W.ControlofReductionKineticstoFormPalladiumNanocubesEnablesTunableConcavity.Chem.Mater.2020,32,4591−4599.(39)Du,K.;Hao,M.;Li,Z.;Hong,W.;Liu,J.;Xiao,L.;Zou,S.;Kobayashi,H.;Fan,J.TuningCatalyticSelectivityofPropaneOxidativeDehydrogenationViaSurfacePolymericPhosphateModificationonNickelOxideNanoparticles.Chin.J.Catal.2019,40,1057−1062.(40)Socrates,G.InfraredandRamanCharacteristicGroupFrequencies:TablesandCharts;JohnWiley&Sons:NewYork,2004.(41)Li,J.-H.;Wang,C.-C.;Huang,C.-J.;Sun,Y.-F.;Weng,W.-Z.;Wan,H.-L.MesoporousNickelOxidesasEffectiveCatalystsforOxidativeDehydrogenationofPropanetoPropene.Appl.Catal.,A2010,382,99−105.2491https://dx.doi.org/10.1021/acs.jpcc.0c11117J.Phys.Chem.C2021,125,2485−2491
此文档下载收益归作者所有