Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown

Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown

ID:81816727

大小:849.02 KB

页数:24页

时间:2023-07-21

上传者:U-14522
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第1页
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第2页
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第3页
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第4页
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第5页
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第6页
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第7页
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第8页
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第9页
Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown_第10页
资源描述:

《Molecular origin of electrical conductivity in gold- polythiophene hybrid particle films - Backes et al. - Unknown - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

SupportingInformationMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsIndraK.Backes,‡LolaGonzález-García,‡,*AnneHoltsch,†FrankMüller†KarinJacobs,†andTobiasKraus‡,§,*‡INM-LeibnizInstituteforNewMaterials,CampusD22,66123Saarbrücken,Germany†ExperimentalPhysicsandCenterforBiophysics,CampusE29,SaarlandUniversity,66123Saarbrücken,Germany§ColloidandInterfaceChemistry,SaarlandUniversity,CampusD22,66123Saarbrücken,Germany*E-mail:tobias.kraus@leibniz-inm.de,tobias.kraus@uni-saarland.de*E-mail:lola.gonzalez-garcia@leibniz-inm.de

1SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilms1.Experimentalsection1.1MaterialsAllmaterialswereusedwithoutfurtherpurification.Chloroauricacid(HAuCl4∙3H2O)wasproducedbydissolvingagoldbar(999.9Degussa,München,Germany)inaquaregia.Theconductivepolymerpoly[2-(3-thienyl)-ethyloxy-4-butylsulfonate](PTEBS)(Mw=40-70kDa)waspurchasedfromSolarisChemInc.(Quebec,Canada).Cetylammoniumbromide(CTAB,≥99%),sodiumoleate(NaOL,>97.0%),silvernitrate(AgNO3,>99%),sodiumborohydride(NaBH4,99%)andhydrochloricacid(HCl,37wt.%inwater)werepurchasedfromSigma-Aldrich(Steinheim,Germany).AllsolutionswerepreparedbydissolvingtheindividualchemicalsinMilli-Qwater(ρ=18.2MΩ·cmat25°C).1.2SynthesisandLigandExchangeGoldnanorods(AuNRs@CTAB)weresynthesizedaccordingtoapublishedprotocolbyYeetal.1Topreparesphericalgoldnanoparticles(AuNPs@CTAB)weslightlymodifiedtheprotocoloftheAuNRssynthesis.Bothsynthesisroutesarebasedonseedmediatedgrowth.GoldnanorodsforAuNRs@CTABweresynthesizedusingaseedsolutionthatwepreparedbymixing5mLofCTABsolution(0.2M)with5mlofHAuCl4solution(0.5mM).Subsequently,1mlofafreshlypreparedNaBH4(6mM)solutionwasaddedtothemixtureundervigorousstirring(1200rpm).Thesolutionturnedfromyellowtobrown.Thesolutionwasstirredfor2minandfinallyagedinanovenat30°Cfor30min.2

2SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsAgrowthsolutionwaspreparedbydissolving7.0gCTABand1.23gNaOLin475mLwarmMilli-Qwater(40°Cto50°C).Subsequently,thesolutionwascooleddownto30°Cand12mLofAgNO3solution(8mM)wasaddedwhilestirring(300rpm).Thesolutionwaskeptundisturbedfor15minataconstanttemperatureof30°C.Afterwards25mLofHAuCl4solution(10mM)wereaddedundervigorousstirring(700rpm)andthesolutionwasstirred(700rpm)for90min.Withinthistimetheorangesolutionturnedcolorless.Subsequently,2.1mLHCl(37wt.%inwater,12.1M)wereaddedunderstirring(400rpm)toadjustthepH.Thesolutionwasstirred(400rpm)for15min,1.25mLofascorbicacidsolution(0.064M)wereaddedandthesolutionwasvigorouslystirred(700rpm)for30s.Inthelaststep,400µLoftheseedsolutionwasaddedandthesolutionwasstirred(900rpm)for30s.Thesolutionwaskeptundisturbedfor12hinanovenat30°C.Thefinalproductswerecollectedbycentrifugationat3700rpmfor38min.SphericalparticlesforAuNPs@CTABwerepreparedusingthesameseedsolutioninthefollowingprocess.Agrowthsolutionwaspreparedbydissolving10.0gCTABand1.23gNaOLin480mLinwarmMilli-Qwater(40°Cto50°C).Subsequently,thesolutionwascooleddownto30°Cand12mLofAgNO3solution(4mM)wereaddedunderstirring(300rpm).Subsequently,4mLofHAuCl4solution(0.5M)wereaddedandthesolutionwasvigorouslystirred(900rpm)for10minat30°C.Afterthis,4mLoftheseedsolutionwasaddedundervigorousstirring(900rpm).Finally,10mLofascorbicacidsolution(0.064M)wereaddeddropwise.Thesolutionwasstirred(900rpm)for12h.Thefinalproductswerecollectedbycentrifugationat3000rpmfor30min.LigandexchangewasperformedtoreplaceCTABbytheconductivepolymerligandPTEBS.Detailedinformationabouttheligandexchangewaspreviouslygivenelsewhere.2Inshort,3

3SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsAuNRs@CTABandAuNPs@CTABwerepurifiedbycentrifugationtoensureanexcessCTABconcentrationofbelow80μM.CentrifugationofAuNRs@CTABwasperformedat3700rpmfor38min.TheAuNPs@CTABwerewashedat3000rpmfor30min.ImmediatelyafterwashingtheAuNRsandAuNPswereincubatedwiththeconductiveligandPTEBSundervigorousstirringfor2-8h.LigandexchangeaccordingtothepublishedprotocolcitedaboveleadstoasurfacecoverageofPTEBSthatwedetermined(viaTGAandUV-visspectroscopy)tobeintherangeof9-10mg/m2(equivalenttoAu:PTEBSmassratioof1:0.8).2RamanspectroscopyindicatedsmallresiduesofCTAB.WethereforemodifiedtheprotocoltoensureahighsurfacecoverageofPTEBSandfurtherreducebromineimpuritiesbyincreasingtheincubationtimeto3days.AfterligandexchangetheAuNRs@PTEBSandAuNPs@PTEBSwerewashedthreetimesbycentrifugationagaintoremovetheexcessamountofPTEBS.ForwashingofthePTEBSfunctionalizednanoparticlessystemsthesameparameters(centrifugationspeedandtime)wereusedasfortheCTABstabilizedAuNRsandAuNPs.1.3LayerdepositionAqueousinksofAuNPs@PTEBSandAuNRs@PTEBS(c(Au)≈30mg/mLforboth)wereusedtodepositlinepatternsonglasssubstrates,wherePDMSstripswereusedastemplatesinordertoobtainwell-definedlines.Twostripswereplacedinparallelonaglasssubstrateataspacingof1-2mm.Thisgapdeterminedthewidthofthedepositedlinepattern.Thegapwasfilledwith10µLofinkthatwaslefttodryatroomtemperature.Sufficientfilmthicknesses(>1µm)werecreatedbyrepeatingthedepositionprocedure5-7times.Theexactlateraldimensionsofthelinepatternsweredeterminedbyopticalmicroscopy(seesection1.4oncharacterization).Theexactthicknesses4

4SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsandlateraldimensionsfrommicroscopywereusedtocalculatetheresistivityvalueofeachsamplepreparedfromAuNRs@PTEBSandAuNPs@PTEBS.1.4CharacterizationTransmissionelectronmicroscopy(TEM)SizesandshapesofthemetalcoresofAuNRs@PTEBSandAuNPs@PTEBSwereinvestigatedbyTEM(JEM2010,JEOL,Japan)workingat200kV.TheaveragediameterandlengthofAuNRs@PTEBSweredeterminedbyevaluating219AuNRsinTEMimages.FordeterminingthemeandiameterofAuNPs@PTEBS,264AuNPswereanalyzedinTEMimages.Scanningelectronmicroscopy(SEM)ScanningelectronmicrographsofthedrieddepositedlinepatternsofAuNPs@PTEBSandAuNRs@PTEBSonglasssubstrateswerereorderedwithaQuanta400ESEM(FEI,Germany).RamanspectroscopySamplesforinvestigationbyRamanspectroscopywerepreparedbydepositingtheAuNRs@PTEBSandAuNPs@PTEBSsolutionsontosteelsubstrates.TheRamananalysiswasperformedonthedriedfilmsusingaconfocalRamanmicroscopeinVia(Renishaw,UnitedKingdom).Theexcitationwavelengthoftheusedlaserwas633nmfortheAuNRs@PTEBSandAuNPs@PTEBS.5

5SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsExaminationofthepureconductivepolymerwasalsoperformedonthinfilmsobtainedbydepositingontosteelplatesfromaqueoussolution.RamanspectrawererecordedbyRamanLabramHREvolutionspectrometer(HoribaJobinYvon,Japan)usinganearIRlaserwithanexcitationwavelengthof782nm.Weusedalaserwithalongerexcitationwavelengthforthecharacterizationofthepurepolymerinordertosuppressthephotoluminescence.HighphotoluminescencewouldoverlaytheRamansignalofthepristinepolymer.DuetoquenchingeffectsincaseofAuNRs@PTEBSandAuNPs@PTEBSphotoluminescencewassuppressedinthesesamples,allowingtheusageofahigherenergylaser(λ=633nm).EachRamanmeasurementaveragedoveranareaofabout1-4mm2.WedetectedRamanspectraatfivedifferentpositionsofeachsample.Thelocalspectrawereverysimilar,confirmingthehomogeneityofthesamples.TwoRamanspectratakenattwodifferentpositionsofeachsampleareillustratedinFigureS1belowforcomparison;theRamanresultsshowninthemaintext(Figure3)arerepresentativefortheentiresamplearea.FigureS1.RamanspectraofAuNRs@PTEBSandAuNPs@PTEBS.Thespectraweretakenattwodifferentpositionofeachsampleinordertoensurehomogeneity.6

6SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilms3DConfocalmicroscopyThethicknessofthedepositedlinepatternsonglassweremeasuredusinga3DconfocalmicroscopeMarSurfCMexplorer(Mahr,Germany).Theobtainedtopographydatawasconvertedintohistograms.ThehistogramswerefittedbyGaussianfunctionstoobtainthemeanthicknessesofthepatternsandtheirrelativestandarddeviations.Themeanthicknessesofthesampleswerebetween4-10µm.Thicknessvariationswithinonelayerwerebelow30%.OpticalmicroscopyThelateraldimensions(widthandlength)ofthedepositedlinepatternsonglassweredeterminedbyanOlympusmicroscopeSZX16(Olympus,Japan).Theobtainedwidthsandlengthswerebetween1-2mm.ElectricalcharacterizationElectricalcharacterizationofthedepositedlinepatternsofAuNPs@PTEBSandAuNRs@PTEBSonglasssubstrateswasperformedwitha2450Sourcemeter(KeithleyInstruments,Ohio,USA)usinga2-pointprobesetup.Current-Voltage(I-V)curvesofsixsamplesofeachAuNPs@PTEBSandAuNRS@PTEBSfilmsweremeasured.BasedonthisdataaverageI-Vcurveswerecalculated.Thedetectedcurrentwasnormalizedtothethicknessofeachlinepattern.ThematerialresistivityρwascalculatedastheinverseoftheI-Vcurve’sslope(R∙t)multipliedbytheratioofwidthtolength(w/l)accordingtoequation(1).Themeanresistivityandthecorrespondingstandarddeviationsweredeterminedoutofthesixsamplesforeachnanoparticlesystem.7

7SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilms(1)ρ:resistivityR:resistancet:thicknessofthelinepatternsw:widthofthelinepatternsl:lengthofthelinepatternsPlasmatreatmentThefilmsofAuNPs@PTEBSandAuNRs@PTEBSonglasssubstratesweresubjectedtoaplasmaof5%hydrogeninargon(Ar/H2plasma).TheplasmatreatmentwasperformedinaRFPICOplasmasystem(Dienerelectronic,Ebhausen,Germany)at100WRFpower(13.56MHz)andagaspressureof0.3mbar.Thermogravimetricanalysis(TGA)TGAmeasurementswereperformedwithaTGA800instrument(PerkinElmer,Massachusetts,USA).WashedinkscontainingAuNPs@PTEBSandAuNRs@PTEBS,respectively,weredriedinsidealuminumoxide(Al2O3)cruciblesuntilthesamplemasswas10-20mg.Thesampleswereheatedfrom50°Cto1000°Cwithaheatingrateof10°C∙min-1undernitrogenatmosphere.8

8SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsDensitymeasurementsThedensityofPTEBSpowder(asobtainedfromthesupplier)wasmeasuredwithagaspycnometerAcccuPyc1330(Micrometrics,Germany)usinghelium.Eachmeasurementusedatleast500mgofPTEBSpowderandwasrepeated25timestoobtainanaveragevalueanditsstandarddeviation.Dynamiclightscattering(DLS)HydrodynamicdiameterdistributionsweredeterminedusingDLSwithaLisizer500instrument(AntonPaar,Ostfildern,Germany).Theinstrumentwasoperatedina173°backscattermode(λ=658nm).Disposablepoly(methylmethacrylate)(PMMA)cuvetteswereusedtocontainthedispersionsamplesfortheparticlesizemeasurement.Thesamplevolumeforeachparticlesizemeasurementwas1.5mLandthegoldconcentrationwaskeptconstantat1mg∙mL-1.Allmeasurementswereperformedat25°C.Hydrodynamicdiameterswerecalculatedusingtheinstrumentsoftware,wherethez-averagediameterwasobtainedusingcumulantanalysis.Thepolydispersityindex(PDI)wascalculatedtoquantifythepolydispersityofeachsample.X-rayphotoelectronspectroscopy(XPS)XPSmeasurementswereperformedwithanESCAMkIIphotoelectronspectrometerbyVacuumGeneratorsusingnon-monochromatizedAl-Kαradiation(=1486.6eV)innormalemissiongeometry,i.e.,spectrawererecordedwiththesurfacenormalofthesampleparalleltotheentranceaxisofthe150°-typehemisphericalanalyzer.Surveyspectraweretakenatapassenergyof50eV9

9SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmswhiledetailspectrawererecordedatapassenergyof20eV.Forquantitativeanalysis,spectrawerecorrectedwithShirleybackgrounds3andpeakareaswereweightedwiththephotoemissioncrosssectionsbyYehandLindau.4Scanningtunnelingmicroscopy(STM)andspectroscopy(STS)STM5,6andspectroscopySTS7,8measurementswereperformedwithaVT-STMbyScientaOmicroninultra-highvacuumwithabasepressurebelow5∙10-9mbaratroomtemperature.Anetched,sharptungstentipwasusedforthemeasurements.Thelowerpotentialwasonthetip.10

10SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilms1.Dynamiclightscattering(DLS)Thehydrodynamicdiametersdh(z-averagediameter)andpolydispersityindices(PDI)obtainedfromDLSonAuNPs@CTABandAuNPs@PTEBSarelistedinTableS1.ThePDIwereinasimilarrangeforAuNPsbeforeandafterligandexchange,indicatingahomogeneousdistributionoftheinitialligandCTABandtheconductivepolymerligandPTEBS.ThePDIofAuNPs@PTEBSwasslightlysmaller,whichmayresultfromthelossofsmallerparticlesinthecentrifugationstepsafterligandexchange.TableS1:Hydrodynamicdiametersdh(z-averagediameter)andpolydispersityindices(PDI)fromDLS.dh[nm]PDIAuNPs@CTAB90.715.7%AuNPs@PTEBS85.917.5%2.Thermogravimetricanalysis(TGA)TheTGAcurvesofgoldrodsandspherescoveredbyCTAB(aftersynthesis)areshowninFigureS2.ThedecompositionofCTABoccurredbetween200°Cto350°Cforbothparticlesystems,whichisingoodagreementwithpublishedliterature.9–11ThetwomasslossstepsvisibleforAuNRs@CTABcorrespondtotheknownCTABbilayersurroundingAuNRs.First,theouterlayerisdetached,followedbythereleaseoftheinnerCTABlayerathighertemperature.9CompletedetachmentofCTABrequiredhighertemperatureforAuNRsthanforAuNPs.Publishedreports11

11SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsobservedthesamephenomenaandrelatedthistoastrongerbindingofCTABtothe{110}facetsofAuNRs.9ThetotalmassfractionofCTABwas4.6wt%forAuNRs@PTEBSand1.0wt%AuNPs@PTEBS,respectively.FigureS2.Thermogravimetryresultsfordriedsamplesofa)AuNRs@CTABandAuNPs@CTAB;b)AuNRs@PTEBSandAuNPs@PTEBSinks.Thesampleswereheatedfrom50°Cto1000°Cundernitrogenatmospherewithaheatingrateof10°C∙min-1.TheTGAcurvesofgoldrodsandspherescoveredbyPTEBS(afterligandexchange)areshowninFigureS2b.Mostofthepolymermasswasdecomposedbetween200°Cand600°C,buttheslopeoftheTGAcurvesweregentlerthanforCTAB.SincetheweightlossstepsofCTABandPTEBSareoverlappingandhardtodistinguishfromeachother,TGAisnotanappropriatemethodtoidentifywhethersmallamountsofCTABremainafterligandexchange.WethereforeusedRamanspectroscopyandXPSmeasurementstoconfirmthesuccessfulreplacementofCTABbyPTEBSandTGAtoquantifytheoverallamountsoforganiccomponents.Thecalculationtheligandshellthicknessrequiresageometricalmodel.Thegeometricaldimensions(meandiameterandmeanlength)oftheAuNRsandtheAuNPsweredeterminedby12

12SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsevaluatingTEMimages.ThevolumeandsurfaceoftheAuNRswereapproximatedbyacylinderhavingtwohemispheresattachedatthetips(FigureS3)aswealreadydescribedelsewhere.2TheAuNPswereapproximatedbyasphere.FigureS3.ModelsforvolumeandsurfacecalculationofAuNRs(a)andAuNPs(b).TheAuNRsareapproximatedwithacylinderhavingtwohemispheresattachedatthetips.TheAuNPsareapproximatedbyasphere.WeassumedthattheorganicweightfractionsdetectedinTGAafterligandexchangewerepurePTEBSthatwashomogenouslydistributedaroundthegoldcores.TheresultingmassfractionsofPTEBSforAuNPs@PTEBS(0.7wt%)andAuNRs@PTEBS(2.0wt%)ledtoidenticalaveragethicknessesofthedriedligandofapproximately0.9nmforboth(TableS2).ThisdatamatchesobservedshellthicknessfromTEMforAuNRs@PTEBS.Theaverageπ-πstackingdistancesofpolythiophenesare0.37-0.39nm,13–15sothateachAuNRorAuNPisinaveragesurroundedbytwotothreelayersofPTEBSpolymerchains.ThisisingoodagreementwithTGAdatapreviouslypublishedforAuNRs@PTEBs.2ThefirstPTEBSlayeriscovalentlybondtothegoldsurface;additionallayersadherethroughπ-πinteractions.13

13SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsTableS2.DimensionsofAuNPsandAuNRsdeterminedfromTEM.CalculatedsurfaceandvolumevaluesofAuNPsandAuNRs.Massandvolumefractionsofgold(Au)andPTEBSobtainedfromTGA.DensityvalueofAutakenfromliterature.12DensityvalueofPTEBSmeasuredwithagaspycnometer.TheligandshellthicknesswascalculatedbasedontheTGAmassfractionsofPTEBS.Aucorediameter(TEM)19nm80.8nmlength(TEM)93.5nm-surface(calculated)5581nm220510nm2volume(calculated)24714nm3276206nm3density(literature)1219.30g∙cm-319.30g∙cm-3massfraction(TGA)98.0%99.3%Ligandshellmassfraction(TGA)2.0%0.7%densityPTEBS(measured)2.07g∙cm-32.07g∙cm-3volumefraction(calculated)18.6%6.9%volume(calculated)4607nm318948nm3shellthickness0.9nm0.9nm14

14SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilms3.EffectofplasmatreatmentonAuNRs@PTEBSandAuNPs@PTEBSlayersFilmsofAuNRs@PTEBSandAuNPs@PTEBSwiththicknessesofabout5µmonglasswerecharacterizedbyScanningElectronMicroscopy(SEM)beforeandaftertreatingthemwithAr/H2plasma(5%hydrogen)for30min.FigureS4(identicalareas)illustratesthatthetreatmentdidnotinducestructuralchangesintheindividualAuNPsorAuNRs.FigureS4.ScanningelectronmicrographsoffilmsmadefromAuNPs@PTEBS(a,c)andAuNRs@PTEBS(b,d)beforeandafterplasmatreatmentwithAr/H2plasmafor30min.TheSEMweretakenatnearlyidenticalpositionsoftheAuNPs@PTEBSandAuNRs@PTEBSfilmsbeforeandafterplasmatreatment.Areasaremarkedwithredcirclestohighlightslightstructuralchangescausedbythetreatment.Weassumethattheplasmatreatmentremovedthepolymercomponentfromthefilms.2,16Sincetheplasmatreatedfilmspossesssimilarthicknessesandpackingdensities,weassumethattheplasmapenetrationdepthiscomparableforfilmsmadefromAuNRs@PTEBSandAuNPs@PTEBS.PTEBSisentirelyremoveddowntomaximumpenetrationdepth,whileitremainsunchangedunderneath.WecomparethechangeinconductivityuponplasmatreatmenttotheconfigurationofPTEBSinthemainmanuscript.15

15SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilms4.RamancharacterizationAdetailedpeakassignmentbasedonliteraturevaluesofvariouspeaksforthespectraofpurePTEBSisshowninTableS3.ThespectraofAuNRs@PTEBSandAuNPs@PTEBSshowallcharacteristicpeaksofPTEBS(Figure3c,maintext).ComparedtotheRamanspectrumofpurePTEBS,thevibrationpeaksareslightlyblue-shiftedinthespectraoftheAuNRs@PTEBSandAuNPs@PTEBS.Inaddition,thepeaksbetween1200cm-1and1550cm-1arebroadened.Bothobservations(blue-shiftandbroadening),indicateaninteractionbetweenthePTEBSligandandAuNRsorAuNPs.Asexplainedinthemaintext,theinteractionsleadtotheformationofbipolaronsandpolaronsintheligandshell.TableS3.MainvibrationalpeaksdetectedintheRamanspectraofpurePTEBS.Thebandassignmentisbasedonliteraturevaluesofsimilarpolythiophenes(e.g.P3HT)andsulfonatecontainingmolecules.17,18,19Ramanshift[cm-1]Bandassignment704δ(C-S-C)ringdeformationmodeandν(S=O)stretchingmode1000-1070δ(CH2)bendingmodeandν(S=O)stretchingmode1183δ(C-H)bendingmode1374intra-ringν(C–C)stretchingmode1462symmetricνs(C=C)ringstretchingmode1528asymmetricνas(C=C)ringstretchingmode16

16SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilms5.XPSandScanningtunnelingmicroscopy(STM)analysisFigureS5aandcshowa500x500nm2STM(scanningtunnelingmicroscopy)imagesofAuNRs@PTEBSandAuNPs@PTEBSdepositedonaSisubstrate,respectively.Both,AuNRsandAuNPsarerandomlydistributedontheSisubstrate.ThelengthoftheAuNRsdeterminedbySTMisabout100nm,fittingtheTEMresults.ThepolyhedralshapeoftheAuNPsisvisibleintheSTMimage.ThediameteroftheAuNPsbasedonSTMisroughlyabout80nm,correspondingtothemeandiameterdetectedbyTEM.TheXPSsurveyspectrumofAuNRs@PTEBSandAuNPs@PTEBSinFigureS5bandd,displaypeaksfromAu,Ag,C,O,S,andNa.TheexactdistributionoftheelementsisdepictedinTableS4.Ourresultsalsoshowthepresenceofsilverionsthatoriginatefromthesilvernitrate(AgNO3)usedduringsynthesisinbothparticlesystems.TableS4.DistributionofthevariouselementsdeterminedbyXPS.AuNRs@PTEBSAu(at-%)Ag(at-%)C(at-%)O(at-%)S(at-%)Na(at-%)41.611.428.011.16.01.9AuNPs@PTEBSAu(at-%)Ag(at-%)C(at-%)O(at-%)S(at-%)Na(at-%)40.011.230.311.55.81.2RescalingthedistributionvaluestothenumberofatomsinPTEBS(excepthydrogenthatcannotbedetectedinXPS)leadstothestoichiometriccompositionofPTEBS(C10O4S2Na)asillustratedinTableS5.ThereisnodecompositionofPTEBSuponbindingtoAuNRsorAuNPsandduringXPSinvestigation.17

17SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsFigureS5.(a)ScanningtunnelingmicrographofAuNRs@PTEBSdepositedonSisubstrate(500x500nm2area,tunnelingcurrent0.1nA,biasvoltage-100mV).(b)XPSsurveyspectrumofAuNRs@PTEBS.(c)ScanningtunnelingmicrographofAuNPs@PTEBS(500x500nm2area,tunnelingcurrent20pA,biasvoltage50mV).(d)XPSsurveyspectrumofAuNPs@PTEBS.18

18SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsTableS5.RescaledelementaldistributionbasedonthestoichiometricdistributionobtainedbyXPSanalysis.AuNRs@PTEBSCOSNa10.134.012.170.69AuNPs@PTEBSCOSNa10.574.002.020.436.Scanningtunnelingspectroscopy(STS)analysisFigureS6showsanSTMscanofAuNRs@PTEBSwithalengthof126.4nmandadiameterof32.1nm,whichisinagreementwiththedimensionsobtainedbyTEManalysisintherangeofexperimentalerror.STSmeasurementswereperformedatseveralpointsalongthelong(FigureS6b)andshortaxes(FigureS6d)ontheAuNR.ArepresentativeselectionispresentedinFigureS6bandd.TheI-VcurvesofthecentralregionsareidenticaltotheI-Vcurvesattheedgeswithintheexperimentaluncertainties.Fromtheseresults,weconcludethatthereisnolargevariationinthedistributionofthePTEBSligandontheAuNRs.Theresistance,astheinverseoftheslopeoftheI-Vcurvesatthelongaxis,wasR=648.0MΩandattheshortaxisR=681.3MΩ,whentheAuNRs@PTEBSarearrangedparalleltothesurface(FigureS6).19

19SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsFigureS6.(a)ScanningtunnelingmicrographsofAuNR@PTEBS.Tunnelingcurrent100pA,samplebias100mV.(b)STSmeasurementsalongthelongaxis.(c)ProfileoftheAuNR@PTEBSalongthelong(black)andshort(red)axisin(a).(d)STSmeasurementsalongtheshortaxis.UnliketheAuNRs@PTEBS,theAuNPs@PTEBSshowedasignificantvariationdependingonthepositionwheretheSTSmeasurementswereperformed.FigureS7showsI-VcurvesmeasuredatdifferentpositionsofoneAuNP.Themeasurementinthecentralregion(blackcircleinFigureS7)isshowingasteeperslopethanatthecornerregions(redrectanglesinFigureS7),whichcorrespondstoahigherconductivity(lowerresistance),respectively.TheresistancesobtainedfromFigureS7areR=163.9MΩforthecentralregionandR=266.3MΩatthecorners.TheobservedresistancevariationsintheSTSmeasurementgiveevidencethatthebindingconfigurationsforPTEBSvaryonthesurfaceofAuNPs(mixtureofface-onandedge-onbinding).20

20SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsFigureS7.STSmeasurementsofAuNP@PTEBSatthecentreandatthecorners.Inset:ScanningtunnelingmicrographoftheAuNP@PTEBS.Tunnelingcurrent500pA,samplebias100mV.21

21SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilms6.References(1)Ye,X.;Zheng,C.;Chen,J.;Gao,Y.;Murray,C.B.UsingBinarySurfactantMixturestoSimultaneouslyImprovetheDimensionalTunabilityandMonodispersityintheSeededGrowthofGoldNanorods.NanoLett.2013,13(2),765–771.https://doi.org/10.1021/nl304478h.(2)Reiser,B.;González-García,L.;Kannelidis,I.;Maurer,J.H.M.;Kraus,T.GoldNanorodswithConjugatedPolymerLigands:Sintering-FreeConductiveInksforPrintedElectronics.Chem.Sci.2016,7,4190–4196.https://doi.org/10.1039/C6SC00142D.(3)Shirley,D.A.High-ResolutionX-RayPhotoemissionSpectrumoftheValenceBandsofGold.Phys.Rev.B1972,5(12),4709–4714.https://doi.org/10.1103/PhysRevB.5.4709.(4)Yeh,J.J.;Lindau,I.AtomicSubshellPhotoionizationCrossSectionsandAsymmetryParameters:1≤Z≤103.At.DataNucl.DataTables1985,32(l),1–155.https://doi.org/10.1016/0092-640X(85)90016-6.(5)Binnig,G.;Rohrer,H.ScanningTunnelingMicroscopy.Surf.Sci.1983,126(1–3),236–244.https://doi.org/10.1016/0039-6028(83)90716-1.(6)Binnig,G.;Rohrer,H.;Gerber,C.;Weibel,E.7×7ReconstructiononSi(111)ResolvedinRealSpace.Phys.Rev.Lett.1983,50(2),120–123.https://doi.org/10.1103/PhysRevLett.50.120.(7)Tersoff,J.;Hamann,D.R.TheoryandApplicationfortheScanningTunnelingMicroscope.Phys.Rev.Lett.1983,50(25),1998–2001.https://doi.org/10.1103/PhysRevLett.50.1998.(8)Teresoff,J.;Hamann,D.R.TheoryofScanningTunnelingMicroscope.Phys.Rev.B1985,22

22SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilms31(2),805–813.https://doi.org/10.1103/PhysRevB.31.805.(9)Nikoobakht,B.;El-Sayed,M.A.EvidenceforBilayerAssemblyofCationicSurfactantsontheSurfaceofGoldNanorods.Langmuir2001,17(20),6368–6374.https://doi.org/10.1021/la010530o.(10)ElKurdi,R.;Patra,D.TheRoleofOH-intheFormationofHighlySelectiveGoldNanowiresatExtremePH:Multi-FoldEnhancementintheRateoftheCatalyticReductionReactionbyGoldNanowires.Phys.Chem.Chem.Phys.2017,19(7),5077–5090.https://doi.org/10.1039/c6cp08607a.(11)Chen,S.;Yang,M.;Hong,S.;Lu,C.NonionicFluorosurfactantasanIdealCandidateforOne-StepModificationofGoldNanorods.Nanoscale2014,6(6),3197–3205.https://doi.org/10.1039/c3nr05546a.(12)CRCHandbookofChemistryandPhysics,84thed.;Lide,D.R.,Ed.;CRCPress.BocaRaton:Florida,2003.(13)Qu,S.;Yao,Q.;Wang,L.;Chen,Z.;Xu,K.;Zeng,H.;Shi,W.;Zhang,T.;Uher,C.;Chen,L.HighlyAnisotropicP3HTFilmswithEnhancedThermoelectricPerformanceviaOrganicSmallMoleculeEpitaxy.NPGAsiaMater.2016,8(7),e292.https://doi.org/10.1038/am.2016.97.(14)Wang,T.;Pearson,A.J.;Lidzey,D.G.CorrelatingMolecularMorphologywithOptoelectronicFunctioninSolarCellsBasedonLowBand-GapCopolymer:FullereneBlends.J.Mater.Chem.C2013,1,7266–7293.https://doi.org/10.1039/c3tc31235f.(15)Alberga,D.;Perrier,A.;Ciofini,I.;Mangiatordi,G.F.;Lattanzi,G.;Adamo,C.23

23SupportinginformationforMolecularoriginofelectricalconductivityingold-polythiophenehybridparticlefilmsMorphologicalandChargeTransportPropertiesofAmorphousandCrystallineP3HTandPBTTT :InsightsfromTheory.Phys.Chem.Chem.Phys.2015,17,18742–18750.https://doi.org/10.1039/c5cp02769a.(16)Maurer,J.H.M.;Gonzalez-Garcia,L.;Reiser,B.;Kanelidis,I.;Kraus,T.UltrathinGoldNanowiresforTransparentElectronics:SoftSinteringandTemperatureStability.Phys.StatusSolidiAppl.Mater.Sci.2016,213(9),2336–2340.https://doi.org/10.1002/pssa.201532874.(17)Chaudhary,V.;Pandey,R.K.;Prakash,R.;Singh,A.K.Self-AssembledH-AggregationInducedHighPerformancePoly(3-Hexylthiophene)SchottkyDiode.J.Appl.Phys.2017,122(22),225501.https://doi.org/10.1063/1.4997554.(18)Veerender,P.;Saxena,V.;Chauhan,A.K.;Koiry,S.P.;Jha,P.;Gusain,A.;Choudhury,S.;Aswal,D.K.;Gupta,S.K.ProbingtheAnnealingInducedMolecularOrderinginBulkHeterojunctionPolymerSolarCellsUsingIn-SituRamanSpectroscopy.Sol.EnergyMater.Sol.Cells2013,120,526–535.https://doi.org/10.1016/j.solmat.2013.09.034.(19)Carlini,L.;Fasolato,C.;Postorino,P.;Fratoddi,I.;Vanditti,I.;Testa,G.;Battocchino,C.ComparisonbetweenSilverandGoldNanoparticlesStabilizedwithNegativelyChargedHydrophilicThiols :SR-XPSandSERSasProbesforStructuralDifferencesandSimilarities.ColloidsSurfacesAPhysicochem.Eng.Asp.2017,532,183–188.https://doi.org/10.1016/j.colsurfa.2017.05.045.24

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭