欢迎来到天天文库
浏览记录
ID:81297886
大小:76.40 KB
页数:3页
时间:2022-10-11
《求动点轨迹方程的方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
求动点轨迹方程的方法轨迹方程就是与几何轨迹对应的代数描述。轨迹方程就是与几何轨迹对应的代数描述。符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。重点要掌握常用求轨迹方法,难点是轨迹的定型及其纯粹性和完备性的讨论。1.建系一建立适当的坐标系,设出动点M的坐标;2.设点一一设轨迹上的任一点P(x,y),写出点P的集合;3.列式——列出动点p所满足的关系式;4.代换一一依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,化简方程为最简形式;5.证明一证明所求方程即为符合条件的动点轨迹方程。求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。1.直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。2.定义法:如果能够确定动点的轨迹满足某种己知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据己知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。3.相关点法(代入法):用动点Q的坐标x,y表示相关点P的坐标xO、yO,然后代入点P的坐标(xO,yO)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律己知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
11.参数法:当动点坐标X、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个儿何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0o求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过〃坐标互化"将其转化为寻求变量间的关系。在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。2.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的方程,也可以解方程组先求出交点的参数方程,再化为普通方程。3.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。1.求轨迹方程的关健是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。2.轨迹方程既可用普通方程表示,乂可用参数方程来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),乂要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性"和"纯粹性",即轨迹若是曲线的一部分,应对方程注明的取值范围,或同时注明的取值范围。
21."轨迹”与〃轨迹方程〃既有区别乂有联系,求“轨迹”时首先要求出“轨迹方程”,然后再说明方程的轨迹图形,最后"补漏"和"去掉增多"的点,若轨迹有不同的情况,应分别讨论,以保证它的完整性。感谢您的阅读,祝您生活愉快。
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处