求动点的轨迹方程方法例题习题答案

求动点的轨迹方程方法例题习题答案

ID:68382567

大小:1003.50 KB

页数:9页

时间:2021-10-01

求动点的轨迹方程方法例题习题答案_第1页
求动点的轨迹方程方法例题习题答案_第2页
求动点的轨迹方程方法例题习题答案_第3页
求动点的轨迹方程方法例题习题答案_第4页
求动点的轨迹方程方法例题习题答案_第5页
求动点的轨迹方程方法例题习题答案_第6页
求动点的轨迹方程方法例题习题答案_第7页
求动点的轨迹方程方法例题习题答案_第8页
求动点的轨迹方程方法例题习题答案_第9页
资源描述:

《求动点的轨迹方程方法例题习题答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、-.求动点的轨迹方程〔例题,习题与答案〕在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难点和重点容〔求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形状类型〕。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与交轨法等;求曲线的方程常用“待定系数法〞。l求动点轨迹的常用方法动点P的轨迹方程是指点P的坐标〔x,y〕满足的关系式。1.直接法〔1〕依题意,列出动点满足的几何等量关系;〔2〕将几

2、何等量关系转化为点的坐标满足的代数方程。例题直角坐标平面上点Q〔2,0〕和圆C:,动点M到圆C的切线长等与,求动点M的轨迹方程,说明它表示什么曲线.解:设动点M(x,y),直线MN切圆C于N。依题意:,即而,所以(x-2)+y=x+y-1化简得:x=。动点M的轨迹是一条直线。2.定义法分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点的轨迹满足圆〔或椭圆、双曲线、抛物线〕的定义。依题意求出曲线的相关参数,进一步写出轨迹方程。例题:动圆M过定点P〔-4,0〕,且与圆C:.

3、word.zl.-.相切,求动圆圆心M的轨迹方程。解:设M(x,y),动圆M的半径为r。假设圆M与圆C相外切,那么有∣MC∣=r+4假设圆M与圆C相切,那么有∣MC∣=r-4而∣MP∣=r,所以∣MC∣-∣MP∣=±4动点M到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M的轨迹为双曲线。其中a=2,c=4。动点的轨迹方程为:3.相关点法假设动点P(x,y)随曲线上的点Q(x,y)的变动而变动,且x、y可用x、y表示,那么将Q点坐标表达式代入曲线方程,即得点P的轨迹方程。这种方法

4、称为相关点法。例题:线段AB的端点B的坐标是(4,3),端点A在圆上运动,求线段AB的中点M的轨迹方程。解:设M(x,y),A(),依题意有:x=,y=那么:x=2x-4,y=2y-3,因为点A()在圆上,所以点M的轨迹方程为:动点M的轨迹为以〔2,〕为圆心,1为半径的圆。4.参数法例题:定点A〔-3,0〕,M、N分别为x轴、y轴上的动点〔M、N不重合〕,且,点P在直线MN上,。求动点P的轨迹C的方程。.word.zl.-.解:设N(0,t),P(x,y)直线AN的斜率,因为,所以直线MN的斜率直

5、线MN的方程为y-t=,令y=0得x=,所以点M(,0),由,得x=),y-t=,那么所以动点P的轨迹方程为:5.交轨法例题:如图,在矩形中,分别为四边的中点,且都在坐标轴上,设。求直线与的交点的轨迹的方程。解:设,由得,.word.zl.-.那么直线的方程为,直线的方程为,即 y+2= y-2=-两式相乘,消去即得的轨迹的方程为.练习与答案1.设圆C与圆x2+〔y.3〕2=1外切,与直线y=0相切,那么C的圆心轨迹为AA.抛物线B.双曲线C.椭圆D.圆2.圆,圆,一动圆与这两个圆外切,求动圆圆心

6、P的轨迹方程。(x>0)3.过点A(4,0)作圆O∶x+y2=4的割线,求割线被圆O截得弦的中点的轨迹。(x-2)+y=4(0≤x<1)4.圆C:+(y-4)=1,动点P是圆外一点,过P作圆C的切线,切点为M,且︱PM︱=︱PO︱〔O为坐标原点〕。求动点P的轨迹方程。提示:︱PO︱=︱PM︱=3x+4y-12=05.圆,圆,动点到圆,上点的距离的最小值相等.求点的轨迹方程。解:动点P到圆C的最短距离为︱PC︱-1,动点P到圆C的最短距离为︱PC︱-1,依题意有:︱PC︱-1=︱PC︱-1, 即︱P

7、C︱=︱PC︱所以动点P的轨迹为线段CC的中垂线。所以动点P的轨迹方程为:2x+y-5=06.双曲线的左、右顶点分别为,点P〔〕,Q〔〕是双曲线上不同的两个动点。求直线与交点的轨迹E的方程。解:由为双曲线的左右顶点知,,,两式相乘,.word.zl.-.因为点在双曲线上,所以,即,故,所以,即直线与交点的轨迹的方程为7.曲线与直线交于两点和,且.记曲线在点和点之间那一段与线段所围成的平面区域〔含边界〕为.设点是上的任一点,且点与点和点均不重合.假设点是线段的中点,试求线段的中点的轨迹方程。解:〔1

8、〕联立与得,那么中点,设线段的中点坐标为,那么,即,又点在曲线上,∴化简可得,又点是上的任一点,且不与点和点重合,那么,即,∴中点的轨迹方程为〔〕.8.点C〔1,0〕,点A、B是⊙O:上任意两个不同的点,且满足,设P为弦AB的中点。求点P的轨迹T的方程。解: 连结CP,由,知AC⊥BC.word.zl.-.∴

9、CP

10、=

11、AP

12、=

13、BP

14、=,由垂径定理知即设点P〔x,y〕,有化简,得到。9.设椭圆,过点的直线交椭圆于A、B,O为坐标原点,点P满足,当绕着M旋转时,求动点P的轨迹方程。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。