modeling social preferences.stephanie

modeling social preferences.stephanie

ID:7280025

大小:829.12 KB

页数:41页

时间:2018-02-10

modeling social preferences.stephanie_第1页
modeling social preferences.stephanie_第2页
modeling social preferences.stephanie_第3页
modeling social preferences.stephanie_第4页
modeling social preferences.stephanie_第5页
资源描述:

《modeling social preferences.stephanie》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、ModelingSocialPreferencesStephanieHurderG3,BusinessEconomicsFriday,April2,2010Motivation•Wehaveseenthatsubjectsdonotactinperfectlyselfish,payoff-maximizingwaysinthelaboratory–Averagegiftindictatorgameis~20%Forsytheetal.(1994)–Recipientsreciprocateintrustandgifte

2、xchangegames,evenwithinmarketse.g.FehrKirchstiegerRiedl(1993)Fehretal.(1998)Motivation•Evidencethatfairnessmatterstosubjects–Positiveultimatumgameoffersrejected,evenatverylargestakes(Andersonetal,WP)•Howeversurplusisnotalwayssplitbetweenbuyerandseller–Inmarketga

3、meofRothetal.(1991)withmanybuyersandoneseller,selleralwaysgetsentiresurplusLiteratureonsocialpreferences•Maybesubjectsaremaximizingtheirutilities,buttheirutilityfunctionstakemorecomplicatedformsthanwecurrentlyuse•SuggestthatutilityfunctionstakeformU(x,x)=x+A(x,x

4、,otherstuff)ijiijwherex=mypayoffix=otherplayer’spayoffjBigquestion:WhatisA(x,x,otherstuff)?ijOutcomes-BasedModels•FehrandSchmidt(1999)andBoltonandOckenfels(2000)bothintroducemodelsoftheformU(x,x)=x+f(x,x)ijiij•Calledoutcomes-basedmodelsbecausetheutilitydependson

5、lyonthepayoffeachplayerreceivesFehrandSchmidt(1999)•Utilityfunctionexhibitsself-centeredinequityaversionU(xi,xj)=xi-αimax{xj-xi,0}-βimax{xi-xj,0}•Assumesβi<αiand0<βi≤1:disadvantageousinequalityhurtsmore(Loewenstein,Thompson,andBazerman(1989))•Assumptionofheterog

6、eneityleadstodistributionofactionsinpopulationRecalltheUltimatumGame•Aproposerisgivenapieofsize1andofferssliceofsizestotheresponder•RespondercanacceptorrejectAccept→Proposergets1-s,RespondergetssReject→Bothget0UltimatumGame•Commonexperimentalresults:–Nooneoffers

7、morethan.5–Mostoffersbetween.4and.5–Fewoffersbelow.2Ultimatumgameoffersforapieofsize5(Forsytheetal.(1994))UltimatumGame•Proposition:Supposetheproposerdoesnotknowtheparameters(α,β)ofthe22responder’sutilitybutknowsthedensityfunctionofαon[α,α].Thentheproposer2LHwil

8、loffer.5ifβ1>.5ϵ[αH/(1+2αH),.5]ifβ1=.5ϵ(αL/(1+2αL),αH/(1+2αH)]ifβ1<.5•Aggregatedoverdistributionsofβandα,this12matchesthedistributionofobservedbehaviorabove•Thisispro

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。