欢迎来到天天文库
浏览记录
ID:7271430
大小:39.50 KB
页数:2页
时间:2018-02-10
《特殊解题方法__染色法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、特殊解题方法——染色法有许多数学问题,可以用不同的颜色来区分事物的不同类别。通过着色把各种条件和问题,形象、直观地显示出来,使分析和处理问题,变得具体和明朗起来,从而使我们能找到一条解决问题的捷径。 例1图3.36由18块1×1的正方形拼成,你能否用9块2×1的长方形将图形盖住。 分析与解:我们将图形中的小方格黑白相间涂色(如图3.37),那么有8块白格和10块黑格。每一块2×1的长方形能够且只能盖住一块白格和一块黑格。用8块2×1的长方形覆盖后,余下两块黑格,而余下的那块2×1的长方形是无法盖住2块黑格的。 所以9块2×1的长方形无法将题设的图
2、形盖住。 例2右图(图3.38)为某展览会展室的布局,相邻两室之间有门相通,参观的人能否从入口进入A室依次而入,又不重复地看过各室的展览后,从B室进入出口处? 分析与解:为了说清楚问题,如图(3.39)将各展室黑白相间涂上颜色。不管人们选择什么路线,总是出了白室进黑室,出了黑室进白室。共有16个展室,要经过15道门。从A出发过第1道门进入黑室。过第2道门进入白室,过第3道门进入黑室……,过第15道门进入黑室,而B室是白室。所以想从白室依次而入,不重复地看过各室从B室进入出口是不可能的。 例317名科学家每两名都通信讨论问题,在他们的通信中仅讨论三
3、个问题,任何一对科学家只讨论一个问题,那么至少有三个科学家互相通信讨论同一个问题。你能说明这个理由吗? 分析与解:将三个不同问题,用红、黄、蓝三种颜色表示,17名科学家看作17个点,两点之间用或红、或黄或蓝的线段相连接表示讨论某个不同的问题。每一点都要发出16条线段。由抽屉原理,至少有6条线段同色。如图3.40表示从点A发出的6条同色线段AA1、AA2、AA3、AA4、AA5、AA6,不妨设这6条线段是红色。 下面考虑A1、A2、A3、A4、A5、A6之间连线的着色情况 (1)若这6点所连线段至少有一条红色,例如A1A2,那么三角形AA1A2三边
4、是红色,表示这三个科学家互相讨论同一个问题。 (2)若这6点间所连线段没有一条红色。那么只能是黄色和蓝色。这6点每一点可发出5条线段。由抽屉原理,至少有三条同色,不妨设为黄色。如图假设A1A2,A1A3,A1A4为黄色。再考虑A2、A3、A4间所连线段的着色情况。 ①若A2、A3、A4间的连线至少有一条黄色,不妨设A2A3为黄色,那么得三角形A1A2A3是三边黄色的三角形,表示这三个科学家讨论同一问题。 ②若A2、A3,A4间的连线没有一条黄色,那么就得一个三边为蓝色的三角形A2A3A4,表示这三个科学家讨论同一问题。 由以上讨论可知,无论怎样
5、,至少有三个科学家互相通信讨论同一个问题。
此文档下载收益归作者所有