资源描述:
《初中数学动点问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、关于动点问题的总结“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想一、建立函数解析式函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P
2、在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).HMNGPOAB图1(3)如果△PGH是等腰三角形,试求出线段PH的长.解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2.(2)在Rt△POH中,,∴.在Rt△MPH中,.∴=GP=MP=(0<<6).(3)△PGH是等腰三角形有三种可能情况:①GP=PH时,,解得.经检验,是原方程的根,
3、且符合题意.②GP=GH时,,解得.经检验,是原方程的根,但不符合题意.③PH=GH时,.综上所述,如果△PGH是等腰三角形,那么线段PH的长为或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=.(1)如果∠BAC=30°,∠DAE=105°,试确定与之间的函数解析式;AEDCB图2(2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.解:(1)在△ABC中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB
4、=75°,∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°,∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC,∴,∴,∴.OFPDEACB3(1)(2)由于∠DAB+∠CAE=,又∠DAB+∠ADB=∠ABC=,且函数关系式成立,∴=,整理得.当时,函数解析式成立.例3(2005年·上海)如图3(1),在△ABC中,∠ABC=90°,AB=4,BC=3.点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EP⊥ED,交射线AB于点P,交射
5、线CB于点F.PDEACB3(2)OF(1)求证:△ADE∽△AEP.(2)设OA=,AP=,求关于的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP的长.解:(1)连结OD.根据题意,得OD⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP,∴△ADE∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3,∴AC=5.∵∠ABC=∠ADO=90°,∴OD∥BC,∴,,∴OD=,AD=.∴AE==.∵△ADE∽△AEP,∴,∴.∴().(3)当BF=1时,①若EP交线段CB的延长线于点F
6、,如图3(1),则CF=4.∵∠ADE=∠AEP,∴∠PDE=∠PEC.∵∠FBP=∠DEP=90°,∠FPB=∠DPE,∴∠F=∠PDE,∴∠F=∠FEC,∴CF=CE.∴5-=4,得.可求得,即AP=2.②若EP交线段CB于点F,如图3(2),则CF=2.类似①,可得CF=CE.∴5-=2,得.可求得,即AP=6.综上所述,当BF=1时,线段AP的长为2或6.三、应用求图形面积的方法建立函数关系式ABCO图8H例4(2004年·上海)如图,在△ABC中,∠BAC=90°,AB=AC=,⊙A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,
7、△AOC的面积为.(1)求关于的函数解析式,并写出函数的定义域.(2)以点O为圆心,BO长为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积.解:(1)过点A作AH⊥BC,垂足为H.∵∠BAC=90°,AB=AC=,∴BC=4,AH=BC=2.∴OC=4-.∵,∴().(2)①当⊙O与⊙A外切时,在Rt△AOH中,OA=,OH=,∴.解得.此时,△AOC的面积=.②当⊙O与⊙A内切时,在Rt△AOH中,OA=,OH=,∴.解得.此时,△AOC的面积=.综上所述,当⊙O与⊙A相切时,△AOC的面积为或.二:动态几何题动态几何特点----问题背景是特殊图形,(
8、特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,