资源描述:
《2011年全国高考理科数学试题及答案-山东》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2011年全国高考理科数学试题及答案-山东2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页,满分150分。考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证证、县区和科类填写在答题卡和试卷规定的位置上。2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置
2、,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。不按能上能下要求作答的答案无效。4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。参考公式: 柱体的体积公式:,其中S是柱体的底面积,h是柱体的高。 圆柱的侧面积公式:,其中c是圆柱的底面周长,是圆柱的母线长。 球的体积公式:,其中R是球的半径。 球的表面积公式:,其中R是球的半径。 用最小二乘法求线性回归方程系数公式:, 如果事件A、B互斥,那么P(A+B)=P(A)+P(B)第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每
3、小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的.1.设集合M={x
4、},N={x
5、1≤x≤3},则M∩N=A.[1,2)B.[1,2]C.[2,3]D.[2,3]2.复数z=(为虚数单位)在复平面内对应的点所在象限为A.第一象限B.第二象限C.第三象限D.第四象限3.若点(a,9)在函数的图象上,则tan=的值为A.0B.C.1D.4.不等式的解集是A.[-5,7]B.[-4,6]C.D.5.对于函数,"的图象关于y轴对称"是"=是奇函数"的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要6.若函数(ω>0)
6、在区间上单调递增,在区间上单调递减,则ω= A.3B.2C.D.7.某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元8.已知双曲线的两条渐近线均和圆C:相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为A.B.C.D.9.函数的图象大致是10.已知是上最小正周期为2的周期函数,且当时,,则函数的图象在区间[0,6]上与轴的交点的个数为 A.6B.7C.8D.91
7、1.右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是A.3B.2C.1D.012.设,,,是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称,调和分割,,已知平面上的点C,D调和分割点A,B则下面说法正确的是A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上第II卷(共90分)二、填空题:本大题共4小题,每小题4分,共
8、16分.13.执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是14.若展开式的常数项为60,则常数的值为.15.设函数,观察: 根据以上事实,由归纳推理可得: 当且时,.16.已知函数=当2<a<3<b<4时,函数的零点.三、解答题:本大题共6小题,共74分.17.(本小题满分12分)在ABC中,内角A,B,C的对边分别为a,b,c.已知.(I)求的值;(II)若cosB=,b=2,的面积S。18.(本小题满分12分) 红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜
9、A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望.19.(本小题满分12分) 在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.20.(本小题满分12分) 等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.第
10、一列第二列第三列第一行3210第二行6414第三行9818(Ⅰ)求数列的通项公式