勾股定理、平方根专题知识点整理

勾股定理、平方根专题知识点整理

ID:6649392

大小:407.00 KB

页数:10页

时间:2018-01-21

勾股定理、平方根专题知识点整理_第1页
勾股定理、平方根专题知识点整理_第2页
勾股定理、平方根专题知识点整理_第3页
勾股定理、平方根专题知识点整理_第4页
勾股定理、平方根专题知识点整理_第5页
资源描述:

《勾股定理、平方根专题知识点整理》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、勾股定理、平方根专题知识点整理勾股定理和平方根勾股定理平方根立方根实数近似数、有效数字判定直角三角形勾股定理的验证定义、性质开平方运算开立方运算定义、性质第一节勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。2.勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,

2、kb,kc同样也是勾股数组。)*附:常见勾股数:3,4,5;6,8,10;9,12,15;5,12,133.判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。(2)有两个角互余的三角形是直角三角形。用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其

3、中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。5.勾股定理的作用:(1)已知直角三角形的两边求第三边。(2)已知直角三角形的一边,求另两边的关系。(3)用于证明线段平方关系的问题。(4)利用勾股定理,作出长为的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a,那么这个数就叫做a的平方根。(也称为二次方根),也就是说如果x2=a,那么x就叫做a的平方根。2、平方

4、根的性质:①一个正数有两个平方根,它们互为相反数;一个正数a的正的平方根,记作“”,又叫做算术平方根,它负的平方根,记作“—”,这两个平方根合起来记作“±”。(a叫被开方数,“”是二次根号,这里“”,亦可写成“”)②0只有一个平方根,就是0本身。算术平方根是0。③负数没有平方根。3、开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。4、(1)平方根是它本身的数是零。(2)算术平方根是它本身的数是0和1。(3)(4)一个数的两个平方根之和为0三、立方根:(1——9的立方)1、立方根的定义:如果一个数的立方等于a,那么这个数就叫做a的立方根。(也称为二次

5、方根),也就是说如果x3=a,那么x就叫做a的立方根。记作“”。2、立方根的性质:①任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.②互为相反数的数的立方根也互为相反数,即=③3、开立方:求一个数的立方根的运算叫做开立方,开立方与立方运算为互逆运算,开立方的运算结果是立方根。4、立方根是它本身的数是1,0,-1。5、平方根和立方根的区别:(1)被开方数的取值范围不同:在中,,在中,a可以为任意数值。(2)正数的平方根有两个,而它的立方根只有一个;负数没有平方根,而它有一个立方根。6、立方根和平方根:不同点:(1)任何数都有立

6、方根,正数和0有平方根,负数没有平方根;即被开方数的取值范围不同:±中的被开方数a是非负数;中的被开方数可以是任何数.(2)正数有两个平方根,任何数都有惟一的立方根;(3)立方根等于本身的数有0、1、—1,平方根等于本身的数只有0.共同点:0的立方根和平方根都是0.四、实数:1、定义:有理数和无理数统称为实数无理数:无限不循环小数称(包括所有开方开不尽的数,∏)。有理数:有限小数或无限循环小数注意:分数都是有理数,因为任何一个分数都可以化为有限小数或无限循环小数的形式2、实数的分类:实数有理数无理数(无限不循环小数)整数分数有限小数或无限循环小数实数的性质:①实数的相反

7、数、倒数、绝对值的意义与在有理数范围内的意义是一样的。②实数同有理数一样,可用数轴上的点表示,且实数和数轴上的点一一对应。③两个实数可以按有理数比较大小的法则比较大小。④实数可以按有理数的运算法则和运算律进行运算。3、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到精确的数,用以描述所研究的量,这样的数就叫近似数。取近似值的方法——四舍五入法4、有效数字:对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数都称为这个近似数的有效数字5、科学记数法:把一个数记为6、实数和数轴:每一个实数都可以用数轴上

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。