欢迎来到天天文库
浏览记录
ID:6594563
大小:214.00 KB
页数:7页
时间:2018-01-19
《椭圆焦半径公式及应用面面观》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、椭圆焦半径公式及应用面面观在椭圆曲线中,焦半径是一个非常重要的几何量,与其有关的问题是各类考试的热点,故值得我们深入研究。一、椭圆焦半径公式P是椭圆=1上一点,E、F是左、右焦点,e是椭圆的离心率,则(1),(2)。P是椭圆上一点,E、F是上、下焦点,e是椭圆的离心率,则(3)。以上结论由椭圆的第二定义及第一定义和椭圆的方程易得。(一)用椭圆方程求椭圆的焦点半径公式数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是
2、从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发.例1已知点P(x,y)是椭圆上任意一点,F1(-c,0)和F2(c,0)是椭圆的两个焦点.求证:
3、PF1
4、=a+;
5、PF2
6、=a-.【分析】可用距离公式先将
7、PF1
8、和
9、PF2
10、分别表示出来.然后利用椭圆的方程“消y”即可.【解答】由两点间距离公式,可知
11、PF1
12、=(1)从椭圆方程解出(2)代(2)于(1)并化简,得
13、PF1
14、=(-a≤x≤a)同理有
15、PF2
16、=(-a≤x≤a)【说明】通过例1,得出了椭圆的焦半径公
17、式r1=a+exr2=a-ex(e=)从公式看到,椭圆的焦半径的长度是点P(x,y)横坐标的一次函数.r1是x的增函数,r2是x的减函数,它们都有最大值a+c,最小值a-c.从焦半径公式,还可得椭圆的对称性质(关于x,y轴,关于原点).(二)、用椭圆的定义求椭圆的焦点半径用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来.椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公
18、式即可.例2.P(x,y)是平面上的一点,P到两定点F1(-c,0),F2(c,0)的距离的和为2a(a>c>0).试用x,y的解析式来表示r1=
19、PF1
20、和r2=
21、PF2
22、.【分析】问题是求r1=f(x)和r2=g(x).先可视x为参数列出关于r1和r2的方程组,然后从中得出r1和r2.【解答】依题意,有方程组②-③得代①于④并整理得r1-r2=⑤联立①,⑤得【说明】椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含c而无b,其基础性显然.二、焦半径公式与准线的关系用椭圆的
23、第二定义,也很容易推出椭圆的焦半径公式.如图右,点P(x,y)是以F1(-c,0)为焦点,以l1:x=-为准线的椭圆上任意一点.PD⊥l1于D.按椭圆的第二定义,则有即r1=a+ex,同理有r2=a-ex.对中学生来讲,椭圆的这个第二定义有很大的“人为性”.准线缺乏定义的“客观性”.因此,把椭圆的第二定义视作椭圆的一条性质定理更符合逻辑性.例3.P(x,y)是以F1(-c,0),F2(c,0)为焦点,以距离之和为2a的椭圆上任意一点.直线l为x=-,PD1⊥l交l于D1.求证:.【解答】由椭圆的焦半径公式
24、
25、PF1
26、=a+ex.对
27、PD1
28、用距离公式
29、PD1
30、=x-=x+.故有.【说明】此性质即是:该椭圆上任意一点,到定点F1(-c,0)(F2(c,0))与定直线l1:x=-(l2:x=)的距离之比为定值e(031、的过程显得很简明.例4.设点P(x,y)适合方程.求证:点P(x,y)到两定点F1(-c,0)和F2(c,0)的距离之和为2a(c2=a2-b2).【分析】这题目是为了完成“从方程到曲线”的这一逆向过程.利用例2导出的焦点半径公式,很快可推出结果.【解答】P(x,y)到F1(-c,0)的距离设作r1=32、PF133、.由椭圆的焦点半径公式可知r1=a+ex①同理还有r2=a-ex②①+②得r1+r2=2a即34、PF135、+36、PF237、=2a.即P(x,y)到两定点F1(-c,0)和F2(c,0)的距离之和为2a.【说38、明】椭圆方程是二元二次方程,而椭圆的焦半径公式是一元一次函数.因此,围绕着椭圆焦半径的问题,运用焦半径公式比运用椭圆方程要显得简便.四、椭圆焦半径公式的变式P是椭圆上一点,E、F是左、右焦点,PE与x轴所成的角为,PF与x轴所成的角为,c是椭圆半焦距,则(1);(2)。P是椭圆上一点,E、F是上、下焦点,PE与x轴所成的角为,PF与x轴所成的角为,c是椭圆半焦距,则(3);(4)。证明:(1)设P在x轴上的射影为Q,当不大于9
31、的过程显得很简明.例4.设点P(x,y)适合方程.求证:点P(x,y)到两定点F1(-c,0)和F2(c,0)的距离之和为2a(c2=a2-b2).【分析】这题目是为了完成“从方程到曲线”的这一逆向过程.利用例2导出的焦点半径公式,很快可推出结果.【解答】P(x,y)到F1(-c,0)的距离设作r1=
32、PF1
33、.由椭圆的焦点半径公式可知r1=a+ex①同理还有r2=a-ex②①+②得r1+r2=2a即
34、PF1
35、+
36、PF2
37、=2a.即P(x,y)到两定点F1(-c,0)和F2(c,0)的距离之和为2a.【说
38、明】椭圆方程是二元二次方程,而椭圆的焦半径公式是一元一次函数.因此,围绕着椭圆焦半径的问题,运用焦半径公式比运用椭圆方程要显得简便.四、椭圆焦半径公式的变式P是椭圆上一点,E、F是左、右焦点,PE与x轴所成的角为,PF与x轴所成的角为,c是椭圆半焦距,则(1);(2)。P是椭圆上一点,E、F是上、下焦点,PE与x轴所成的角为,PF与x轴所成的角为,c是椭圆半焦距,则(3);(4)。证明:(1)设P在x轴上的射影为Q,当不大于9
此文档下载收益归作者所有