参数取值问题求解策略

参数取值问题求解策略

ID:6590783

大小:280.50 KB

页数:5页

时间:2018-01-19

参数取值问题求解策略_第1页
参数取值问题求解策略_第2页
参数取值问题求解策略_第3页
参数取值问题求解策略_第4页
参数取值问题求解策略_第5页
资源描述:

《参数取值问题求解策略》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、参数取值问题求解策略参数的取值范围的问题,在中学数学里比比皆是,主要体现在以下四个方面:一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。例1.已知当xR时,不等式a+cos2x<54sinx+恒成立,求实数a的取值范围。分析:在不等式中含有两个变量a及x,其中x的范围已知(xR),另一变量a的范围即为所求,故可考虑将a及x分离。解:原不等式即:4sinx+cos2x

2、+cos2x的最大值,故上述问题转化成求f(x)=4sinx+cos2x的最值问题。f(x)=4sinx+cos2x=2sin2x+4sinx+1=2(sinx1)2+33,∴a+5>3即>a+2,上式等价于或,解得a<8.说明:注意到题目中出现了sinx及cos2x,而cos2x=12sin2x,故若把sinx换元成t,则可把原不等式转化成关于t的二次函数类型。另解:a+cos2x<54sinx+即a+12sin2x<54sinx+,令sinx=t,则t[1,1],整理得2t24t+4a+>0,(t[1,1])恒成立。设f(t)=2t24t+

3、4a+则二次函数的对称轴为t=1,f(x)在[1,1]内单调递减。只需f(1)>0,即>a2.(下同)例2.设直线过点P(0,3),和椭圆顺次交于A、B两点,试求的取值范围.分析:本题中,绝大多数同学不难得到:=,但从此后却一筹莫展,问题的根源在于对题目的整体把握不够.事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.所求量的取值范围把直线l的方程y=kx+3代入椭圆方程,消去y得到关于x的一元二次方程xA=f(k),xB=g(

4、k)得到所求量关于k的函数关系式求根公式AP/PB=—(xA/xB)由判别式得出k的取值范围思路1:从第一条想法入手,=已经是一个关系式,但由于有两个变量,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB的斜率k.问题就转化为如何将转化为关于k的表达式,到此为止,将直线方程代入椭圆方程,消去y得出关于的一元二次方程,其求根公式呼之欲出.解1:当直线垂直于x轴时,可求得;当与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得,解之得因为椭圆关于y轴对称,点P在y轴上,所以只需考虑的情形.当时,,,所以===.由,解得,所以

5、,把直线l的方程y=kx+3代入椭圆方程,消去y得到关于x的一元二次方程xA+xB=f(k),xAxB=g(k)构造所求量与k的关系式关于所求量的不等式韦达定理AP/PB=—(xA/xB)由判别式得出k的取值范围综上.思路2:如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源.由判别式值的非负性可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来.一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称关系式.原因找到后,解决问题的方法自然也就有了,即我们可以构造关于的对称关系式.

6、解2:设直线的方程为:,代入椭圆方程,消去得(*)则令,则,在(*)中,由判别式可得,从而有,所以,解得.结合得.综上,.说明:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.本题也可从数形结合的角度入手,给出又一优美解法.二、直接根据图像判断若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。例3.当x(1,2)时,不等式(x1)2

7、(x-1)2y2=logax分析:若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为常见的对数函数的图象,故可以通过图象求解。解:设y1=(x1)2,y2=logax,则y1的图象为右图所示的抛物线,要使对一切x(1,2),y11,并且必须也只需当x=2时y2的函数值大于等于y1的函数值。故loga2>1,a>1,1

8、p

9、2的所有实数p,求使不等式x2+px+1>2p+x恒成立的x的取值范围。分析:在不等式中出现了两个字母:x及P,关键在于该把哪个字母看成是一个变量,另一个作为常数

10、。显然可将p视作自变量,则上述问题即可转化为在[2,2]内关于p的一次函数大于0恒成立的问题。略解:不等式即(x1)p+x22x+1>0,设f(p)=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。