[高一数学]初升高数学衔接点

[高一数学]初升高数学衔接点

ID:6450760

大小:3.75 MB

页数:49页

时间:2018-01-14

[高一数学]初升高数学衔接点_第1页
[高一数学]初升高数学衔接点_第2页
[高一数学]初升高数学衔接点_第3页
[高一数学]初升高数学衔接点_第4页
[高一数学]初升高数学衔接点_第5页
资源描述:

《[高一数学]初升高数学衔接点》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、初高中数学衔接教材现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必

2、须掌握的基本题型与常用方法。5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。8.几何部分很多概念(如重心、垂心等)和定理(如

3、平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。说明:请同学认真学习该本分内容,到高中以后不再讲授该内容,就当你们已经学过,并能熟练掌握了。进入高中以后能否在数学学科上完成顺利衔接,就必须学好这部分内容,加油!!时间仓促,如有错误,敬请原谅目录1.1数与式的运算1.1.1绝对值1.1.2乘法公式1.1.3二次根式1.1.4分式1.2分解因式阅读强化:十字相乘法2.1一元二次方程2.1.1根的判别式2.1.2根与系数的关系(韦达定理)2.2二次函数2.2.1二次函

4、数y=ax2+bx+c的图像和性质2.2.2二次函数的三种表示方式2.2.3二次函数的简单应用3.1相似形3.1.1.平行线分线段成比例定理3.1.2相似形3.2三角形3.2.1三角形的“四心”3.2.2几种特殊的三角形3.3圆3.3.1直线与圆,圆与圆的位置关系3.3.2点的轨迹1.1数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即

5、a

6、=绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:

7、a-b

8、表示在数轴上,数a和数b之间的距离.例1解不等式:

9、x

10、-1

11、+

12、x-3

13、>4.解:由,得;由,得;①若,不等式可变为,即>4,解得x<0,又x<1,∴x<0;②若,不等式可变为,即1>4,∴不存在满足条件的x;③若,不等式可变为,即>4,解得x>4.综上:x<0,或x>4.练习1.填空:(1)若,则x=_________;若,则x=_________.(2)如果,且,则b=________;若,则c=________.2.选择题:下列叙述正确的是()(A)若,则(B)若,则(C)若,则(D)若,则3.化简:

14、x-5

15、-

16、2x-13

17、(x>5).1.1.2.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式;

18、(2)完全平方公式.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式;(2)立方差公式;(3)三数和平方公式;(4)两数和立方公式;(5)两数差立方公式.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1计算:.解法一:原式===.解法二:原式===.例2已知,,求的值.解:.练习1.填空:(1)();(2);(3).2.选择题:(1)若是一个完全平方式,则等于()(A)(B)(C)(D)(2)不论,为何实数,的值()(A)总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如的代数式叫做二次根式.根号下含有字母、

19、且不能够开得尽方的式子称为无理式.例如,等是无理式,而,,等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与,与,等等.一般地,与,与,与互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。