大物小组实验报告(演示部分)

大物小组实验报告(演示部分)

ID:6357475

大小:245.50 KB

页数:5页

时间:2018-01-11

大物小组实验报告(演示部分)_第1页
大物小组实验报告(演示部分)_第2页
大物小组实验报告(演示部分)_第3页
大物小组实验报告(演示部分)_第4页
大物小组实验报告(演示部分)_第5页
资源描述:

《大物小组实验报告(演示部分)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、万有引力定律的发现与应用物理小论文PB05000821吴瑞阳万有引力定律的发现我们大家都知道万有引力定律是牛顿发现的,小时候我们也听说过牛顿看到苹果落地而发现万有引力的故事。但它的发现岂只是看见苹果落地这么简单?万有引力公式:其中G为万有引力常量。在牛顿的时代,一些科学家已经有了万事万物都有引力的想法。而且牛顿和胡克曾经为了万有引力的发现权发生过争论。有资料表明,万有引力概念由胡克最先提出,但由于胡克在数学方面的造诣远不如牛顿,不能解释行星的椭圆轨道,而牛顿不仅提出了万有引力和距离的平方成正比,而且

2、圆满的解决了行星的椭圆轨道问题,万有引力的优先发现权自然归属牛顿。正如他所说过,牛顿是站在巨人的肩膀上。开普勒的研究成果对万有引力的发现有着不可磨灭的贡献。开普勒是德意志的天文学家,他的老师弟谷把一生的天文观测资料留给了他。在此基础上,开普勒经过20年的计算和整理于1609年发表了行星运动的第一、第二定律。后来又发表了行星运动的第三定律。在牛顿的回忆录里可知,牛顿最先研究的是月亮的运动。牛顿的平方反比律是由开普勒的行星运动第三定律得出的。要对椭圆轨道情况进行计算,显然牛顿还必须有一些关于微积分和基本

3、力学定律的概念,牛顿在基础力学上有过众多发现,同时牛顿和莱布尼茨各自独立的发现了微积分。牛顿应用了微积分来计算万有引力。关于万有引力定律的发现权,历史的结论是:它是牛顿发现的。万有引力的表达式为,它的建立是牛顿定律和开普勒定律的综合的结果,而牛顿在其中起了关键的作用。万有引力定律的建立一.平方反比律的确定1.从理论计算得出平方反比的假设:为了简便起见,可把行星运动轨道看作圆形(把行星轨道看作圆形时,课本上已有相关证明),这样,根据面积定律,行星应作匀速圆周运动,只有向心加速度a=v2/r,其中,v是

4、行星运行速度,r是圆形轨道的半径。根据牛顿第二定律:f=ma有又由由开普勒第三定律,K是与行星无关的太阳常量即于是……①牛顿得到第一个结果:如果太阳的引力是行星运动的原因,则这种力应和行星到太阳的距离的平方成反比。2.平方反比假设的验证:牛顿“苹果落地”的故事广为流传。故事大意是说,1665-1666年感染病流行,牛顿从剑桥大学退职在家,一天,他在花园里想重力的动力学问题,偶然看到苹果落地,引起他的思考。在我们能够攀登的最远距离上和最高山颠上,都未发现重力有明显的减弱,这个力必然到达比通常想象的远得

5、多的地方。那也应该高到月球上。如果是这样,月球的运动必定受它的影响,或许月球就是由于这个原因,才保持在它的轨道上的。ABPOθrs设想月球处在它的轨道上的任意点A(见图),O是地心,如果不受外力,它将沿一直线AB运动,然而实际它的轨道是弧线AP,AB与轨道在A点相切。则月球向O落下了距离BP=y,令弧长AP=s=2πrt/T,而cosθ≈1-/2,θ=s/r则y=r(1-cosθ)≈s2/2r=4π2r2t2/2rT2=2π2rt2/T2,在地面上t时间内一个重物下落距离为y=gt2/2由此得y/y

6、’=4π2r/gT2月球绕地的周期T=27.3d≈2.36×106s,地面上的重力加速度g=9.8m/s2,地球半径R的准确数值是6400km,古希腊的天文学家伊巴谷通过观测月全食持续的时间,曾相当精确的估算出地月距离r为地球半径的60倍,则r=60R=3.84×105km用这个数值代入,即得y/y’=1/3600而R2/r2=1/3600y/y’=a/g=ma/mg=f/mg=R2/r2所以:f=mgR2/r2即:力和距离的平方成反比二.与m和M成正比的确定①式表明力与被吸引物体质量m成正比,同时

7、根据牛顿第三定律,力的作用是相互的,f是M对m的作用,f’是m对M的作用,f与m成正比,则同理f’必与M成正比,又f=f’,则f必同时与m和M成正比。①式可写成:f=GMm/r2,……②其中G是万有引力常量。三.万有引力常量的G测定既然有了万有引力的表达式,那就要测出万有引力常量。测量万有引力常量G的数值,就要测量两个已知质量的物体间的引力。1798年,卡文迪许(H.Cavendish)做了第一个精确的测量。他所用的是扭秤装置,如图所示,两个质量均为m的小球固定在一根轻杆的两端,在用一根石英细丝将这

8、两杆水平的悬挂起来,每个质量为m的小球附近各放置一个质量为M的大球。根据万有引力定律,当大球在位置AA时,由于小球受到吸引力,悬杆因受到一个力矩而转动,使悬丝扭转。引力力矩最后被悬丝的弹性恢复力矩所平衡。悬丝扭转的角度θ可用镜尺系统来测定。为了提高测量的灵敏度,还可以将大球放在位置BB,向相反的方向吸引小球。这样,两次悬杆平衡之间的夹角纠正大了一倍。如果已知大球和小球的质量M,m和他们相隔的距离,以及悬丝扭力的相关系数,就可由测得的θ来计算G。卡文迪许测定的万有引力常

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。