欢迎来到天天文库
浏览记录
ID:6260960
大小:699.00 KB
页数:19页
时间:2018-01-08
《2017届河北省衡水中学高三下学期二调考试理科数学试题及答案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2013—2014学年度第二学期高三年级二调考试数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。考试时间120分钟。第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分。下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知是实数集,,则()A.B.C.D.2.在复平面内,复数(是虚数单位)所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.=()A.4B.2C.D.4.关于统计数据的分析,有以下几个结论,其中正确的个数为()①利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则
2、说明线性回归模型的拟合精度较高;②将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化;③调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法;④已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.6826,则P(X>4)等于0.1587⑤某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为15人。A.2B.3C.4D.55.已知等比数列{an}的前n项和为Sn,若S=4(a1+a3+a5+…+a2n
3、-1),a1a2a3=27,则a6=()A.27B.81C.243D.7296.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.7.程序框图如图所示,该程序运行后输出的的值是()A.B.C.D.8.设锐角的三内角、、所对边的边长分别为、、,且,,则的取值范围为()A.B.C.D.9.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.10.在平面直角坐标系中,记抛物线与x轴所围成的平面区域为,该抛物线与直线y=(k>0)所围成的平面区域为,向区域内随机
4、抛掷一点,若点落在区域内的概率为,则k的值为()A.B.C.D.11.如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC,BD,设内层椭圆方程为,若直线AC与BD的斜率之积为,则椭圆的离心率为()A.B.C.D.12.已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是()A.B.C.D.第Ⅱ卷(非选择题共90分)一、填空题(每题5分,共20分。把答案填在答题纸的横线上)13.设球的半径为时间的函数,若球的体积以均匀速度增长,则球的表面积的增长速度与球半径的乘积为14.若的二项展开式中,所有项的二项式系数和为,则该展开式中的常数项为15.在△AB
5、C中,边角,过作,且,则.16.椭圆中有如下结论:椭圆上斜率为1的弦的中点在直线上,类比上述结论:双曲线上斜率为1的弦的中点在直线上三、解答题(本题满分70分,解答应写出文字说明、证明过程或演算步骤,写在答题卡相应位置)17.(本题满分12分)如图,在中,边上的中线长为3,且,.(Ⅰ)求的值;(Ⅱ)求边的长.18.(本题满分12分)如图,四棱锥P-ABCD中,底面ABCD是直角梯形,CD⊥平面PAD,BC∥AD,PA=PD,O,E分别为AD,PC的中点,PO=AD=2BC=2CD.(Ⅰ)求证:AB⊥DE;(Ⅱ)求二面角A-PC-O的余弦值.19.(本题满分12分)今年年初,我国
6、多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁。私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力。为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数469634(Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两
7、人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.20.(本题满分12分)我校某同学设计了一个如图所示的“蝴蝶形图案(阴影区域)”来庆祝数学学科节的成功举办.其中、是过抛物线焦点的两条弦,且其焦点,,点为轴上一点,记,其中为锐角.(1)求抛物线方程;(2)当“蝴蝶形图案”的面积最小时求的大小.21.(本题满分12分)已知函数.(1)求函数的单调区间;(2)若函数满足:①对任意的,,当时,有成立;②对恒成立.求实数的取值范围.请考生在22,23,2
此文档下载收益归作者所有