资源描述:
《《物流管理定量分析》模拟试题.docx》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《物流管理定量分析方法》模拟试题一、单项选择题(每小题3分,共18分)1.若某物资的总供应量(B)总需求量,可增设一个虚销地,其需求量取总供应量与总需求量的差额,并取各产地到该销地的单位运价为0,则可将该不平衡运输问题化为平衡运输问题。(A)等于(B)小于(C)大于(D)不超过2.某物资调运问题,在用最小元素法编制初始调运方案过程中,第一步安排了运输量后,其运输平衡表(单位:吨)与运价表(单位:百元/吨)如下表所示:运输平衡表与运价表销地产地、一、B1B2B3供应量B1B2B3A113243A27812
2、8A38151812需求量8171035第二步所选的最小元素为(C)(A)1(B)23•某物流公司有三种化学原料(C)3(D)4A1,A2,A3。每斤原料A1含B1,B2,B3三种化学成分的含量分别为0.7斤、0.2斤和0.1斤;每斤原料A2含Bi,B2,B3的含量分别为0.1斤、0.3斤和0.6斤;每斤原料A3含Bi,B2,B3的含量分别为0.3斤、0.4斤和0.3斤。每斤原料A1,A2,A3的成本分别为500元、300元和400元。今需要B1成分至少100斤,B2成分至少50斤,B3成分至少80斤。
3、为列岀使总成本最小的线性规划模型,设原料A1,A2,A3的用量分别为X1斤、X2斤和X3斤,则化学成分B2应满足的约束条件为((A)0.2X1+0.3x2+0.4x3》50(C)0.2X1+0.3x2+0.4x3=50(B)0.2X1+0.3x2+0.4x3<50(D)minS=500x1+300x2+400x3124.设A4x712B,并且A=B,则x=(C)x7(A)4(B)35•设运输某物品的成本函数为(C)2(D)1C(q)=q2+50q+2000,则运输量为100单位时的成本为((A)1700
4、0(B)1700(C)170(D)250C(q),R(q),L(q),则下列等式成立的是(C)(A)L(q)qL(q)dqC(0)0(B)C(q)qC(q)dqC(0)0(C)R(q)qR(q)dq0(D)L(q)qL(q)dqL(0)0、填空题(每小题2分,共10分)6.某产品的成本函数、收入函数、利润函数分别为1.设某平衡运输问题有4个产地和5个销地,则用最小元素法编制的初始调运方案中填数字的格子数为1,销地产地B1B2B3供应量B1B2B3A18513246A221012758需求量871025则
5、空格(A2,Bl)对应的检验数为__4_。1.在单纯形法中,最小比值原则是为了确定—主元__,然后对该元素进行旋转变换,即该元素化为同列其它元素化为02.有一物流公司每年需要某种材料9000吨,这个公司对该材料的使用是均匀的。已知这种材料每吨每年库存费为2元,每次订货费为40元,则年总成本对订货批量q的函数关系式C(q)=__q360000q01,01,1.已知运输某物品q吨的成本函数为C(q)4002q5q,则运输该物品的边际成本函数为MC(q)01,01,三、计算题(每小题6分,共18分)1.已知线
6、性方程组AX=B的增广矩阵经初等行变换化为阶梯形矩阵:x,32x4x5求方程组的解。x21x43x5(X4,X5为自由未知数)x315x42x5122•设yxln(2x)e,求y。eex1x221x3.计算定积分:(1xe)dx。电In2e试写岀用MATLAB软件绘函数ylog2:.
7、x
8、X’的图形(绘图区间取[—5,5])的命令语句。>>clear>>symsxy>>y=log2(sqrt(abs(x)+xA3))>>fplot(y,[-55])2试写岀用MATLAB软件计算定积分exdx的命令语句。
9、>>clear>>symsxye1x3四、编程题(每小题4分,共12分)102351.试写岀用MATLAB软件求矩阵A61830的逆矩阵的命令语句2081301,>>A=[10235;61830;20813]>>B=inv(A)0>>y=exp(sqrt(x))>>int(y,0,2)五、应用题:(第1题21分,第2题11分,第3题10分,共42分)1•某物流公司从A1,A2和A3三个产地,运送一批物资到B1,B2,B3和B4四个销地。已知各产地的供应量、各销地的需求量(单位:吨)及各产地到各销地的单位
10、运价(单位:元/吨)如下表所示:(1)问如定运划,使输费小?按行方案计算、、销地产地...B1B2B3B4供应量B1B2B3B4A130030030203050A220050070070804010A320030030080050403060需求量4006003005001800运输平衡表与运价表何制输计总运用最列顺序对初始调运中空格找闭回路,检验数,直到出现负检验数:11=0,13=20,14=80,22=20,23=—10已出现负检验