浅谈如何提高小学生的数学思维能力.docx

浅谈如何提高小学生的数学思维能力.docx

ID:62464340

大小:17.18 KB

页数:4页

时间:2020-02-27

浅谈如何提高小学生的数学思维能力.docx_第1页
浅谈如何提高小学生的数学思维能力.docx_第2页
浅谈如何提高小学生的数学思维能力.docx_第3页
浅谈如何提高小学生的数学思维能力.docx_第4页
资源描述:

《浅谈如何提高小学生的数学思维能力.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、浅谈如何提高小学生的数学思维能力如何培养小学生的思维能力,是我近几年在小学数学教学中一直所思考的问题。具有独立思考的能力,是我们培养社会主义现代化建设所需要的人才的基本条件之一,否则我们培养出的学生就不可能担当建设祖国的重任。一、培养思维能力要贯穿在各部分内容的教学中这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例

2、如,教学四边形概念时,不宜直接画一个四边形,告诉学生这就叫做四边形。而应先让学生观察生活中各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对四边形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断。如(1+2)+3=1+(2+3),先把1和2加在一起再同3相加,与先把2和3加在一起再同1相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先

3、把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法二、创设问题情境,激活学生的创新性思维问题情境能激发学生的学习兴趣,能激起学生学习的需要,因此教师在教学活动中应有意识地创设问题情境。教师要利用语言、设备、环境、活动等各种手段,制造一种符合需要的情境。在教学中,教师要善于启发、善于将课题转化为学生认知中的矛盾、内在的需要,还要不断设疑、激疑,培养学生的学习兴趣,激发求知欲望

4、。创设问题情境的方法多种多样,关键是让学生从情境中激发求知欲,从情境中产生问题。我经常采用的方法有:以旧引新,沟通引趣;提示矛盾,设疑生趣;故事开场,引发兴趣;制造悬念,激发兴趣等。在教学中,我尝试利用生动的问题情境。例如,教学《圆的周长》的导入部分:先出示不同圆形物体,要学生去测量它们的周长,学生感觉能够测量得出;当教师拿一根绳子在空中做圆周运动时组成的圆,学生感觉测这个圆的周长很困难,进而激发寻找更好的办法计算圆的周长的欲望。因此,教师只有努力创设情境,摒弃传统的“师道尊严”,做到教学民主,创造一个宽松、和谐的教与学氛围,才能打开学生的“问题闸门”,进而激活学生的思维。

5、三、设计好练习题对于培养学生思维能力起着重要的促进作用培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,每位老师的头脑中都应该装有每个知识点各种题目。课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级、学生情况的不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。比如:设计练习题要有针对性,要根据培养目标来进行设计

6、。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“方程一定是等式;等式也一定是方程()”。如要作出正确判断,学生就要充分理解方程与等式的关系。四、开拓思路,诱发思维的发散性发散性思维是创新思维的基础。正是在发散思维中,我们看到了创新思维的最明显的标志。这种思维是根据已有信息,从不同角度、不同方向思考,从多方面寻求多样性答案的一种展开性思维方式,体现出高度的创造思维的特点。徐利治教授曾指出:创造能力=知识量×发散思维能力。思维的发散性,表现在思维过程中,不受一定解题模式的束缚,从问题个性

7、中探求共性,寻求变异,多角度、多层次去猜想、延伸、开拓,是一种不定势的思维形式。发散思维具有多变性、 开放性的特点,是创造性思维的核心。利用变式训练,一题多解或多题一解来开阔学生思路,引起思维迁移,延伸思维的广阔性,这类题具有很强的严密性和发散性,通过训练把学生的思维引到一个广阔的空间,培养了学生思维的广度和深度。这类题的题设与结论不匹配,需要周密思考,恰当运用数学知识去发挥、探索、推断,从而得到多个结果。此类题往往称为“开放型”试题,如:“你还能提出什么数学问题?”开放型问题设计是数学教学的一种形式,一种教学观,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。