欢迎来到天天文库
浏览记录
ID:62331047
大小:253.01 KB
页数:19页
时间:2021-04-28
《人教版八年级数学下册 第17章 勾股定理 章节综合练习 【含答案】.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人教版八年级数学下册第17章勾股定理章节综合练习一.选择题1.下列长度的三条线段,能组成直角三角形的是( )A.3,4,8B.5,6,10C.5,5,11D.5,12,132.传说,古埃及人常用“拉绳”的方法画直角,有一根长为m的绳子,古埃及人用这根绳子拉出了一个斜边长为n的直角三角形,那么这个直角三角形的面积用含m和n的式子可表示为( )A.B.C.D.3.如图所示的是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是( )A.50B.16C.25D.414.如图,在Rt△ABC中,∠ACB=90°,A
2、B=4.分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于( )A.2πB.3πC.4πD.8π5.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,大正方形面积为S1,小正方形面积为S2,则(a+b)2可以表示为( )A.S1﹣S2B.S1+S2C.2S1﹣S2D.S1+2S26.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是( )A.14B.13C.
3、14D.147.如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为( )A.25B.19C.13D.1698.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是( )A.76B.72C.68D.529.在学习“勾股数”的知识时,爱思考的小
4、琦发现了一组有规律的勾股数,并将它们记录在如下的表格中:a68101214…b815243548…c1017263750…则当a=18时,b+c的值为( )A.242B.200C.128D.162二.填空题10.下列各组数:①1、2、3;②,,2;③0.3、0.4、0.5;④9、40、41,其中是勾股数的是 (填序号).11.若正整数a,n满足a2+n2=(n+1)2,这样的三个整数a,n,n+1(如:3,4,5或5,12,13)我们称它们为一组“完美勾股数”.当n<150时,共有 组这样的“完美勾股数”.12.如
5、图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是 .13.如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD的面积为 .14.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.则旗杆的高度 .三.解答题15.如图,四边形D
6、EFG中,∠DEF=120°,∠EFG=135°,DE=6,EF=5,FG=,求DG的长.16.如图,已知△ABC中,∠ACB=90°,过点B作BD∥AC,交∠ACB的平分线CD于点D,CD交AB于点E.(1)求证:BC=BD;(2)若AC=3,AB=6,求CD的长.17.观察探究:小明同学非常细心,火柴盒在桌面上倒下,便启迪他得到很多发现.如图,火柴盒的一个侧面ABCD逆时针方向倒下后到AB′C′D′的位置,连接CC′.设AB=b,BC=a,AC=c.(1)他在学习了因式分解后,意外地发现,代数式a2﹣b2表示了图中一
7、个长方形的面积,请你把这个长方形画完整,并把它指出来;(2)学过勾股定理之后,他又惊奇地发现,利用四边形BCC′D′的面积可以得到证明勾股定理的新方法,请你利用这个四边形的面积证明勾股定理:a2+b2=c2.18.如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.19.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IEC
8、F中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:利用S△ABC=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的
此文档下载收益归作者所有