欢迎来到天天文库
浏览记录
ID:62066945
大小:3.01 MB
页数:131页
时间:2021-04-14
《最新Chapter-9-The-Laplace-Transform教学讲义PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Chapter-9-The-Laplace-TransformContentsTheLaplaceTransform(BilateralandUnilateral)andtheInverseLTTheRegionofConvergenceforrationalLTPropertiesofLTAnalysisLTIsystemusingLTCTFouriertransformenablesustodoalotofthings,e.g.—AnalyzingfrequencyresponseofLTIsystem
2、s—SolvingLCCDE’s—Sampling—Modulation……Whydoweneedyetanothertransform?MotivationfortheLaplaceTransformOneviewofLTisasanextensionoftheFTtoallowanalysisofbroaderclassofsignalsandsystems.TherelationshipbetweenFTandLTabsoluteintegrabilityneededExample:etu(t)The
3、relationshipbetweenFTandLTFTisaspecialcaseofLTifX(s)canbeevaluatedats=jω.Example9.1Whena>0ThentheLaplacetransformSinceandThatis,Forexample,fora=0,x(t)istheunitstep(x(t)=u(t))withLaplacetransformExample9.2ThenorrequireRe{s+a}<0,orRe{s}<-aThatis,Acriticaliss
4、ueindealingwithLaplacetransformisconvergence:——X(s)generallyexistsonlyforsomevaluesofs,locatedinwhatiscalledtheregionofconvergence(ROC),forwhichtheintegralinLTtransformconvergesROC={sothat}DependsonlyonσnotonωConclusionsTheLThasconvergenceproblemsastheFT.—
5、—TheLTmayconvergeforsomevaluesofRe{s}andnotforothers.InspecifyingtheLTofasignal,bothX(s)andROCarerequired.IftheROCofLTincludejω-axis,wecangetReRes-planes-planeImIm-a-aROCofEx.9.1ROCofEx.9.2GraphicalVisualizationoftheROCAconvenientwaytodisplaytheROCisshowna
6、sthefollowingfigure:Examples:orInthesameway,weobtainNotethat,LTalsohasashortage.Anarbitraryperiodicsignal,suchashasnoLTexisted.BecauseitsROCisnotexisted.Example9.3Example9.4RationalLaplaceTransformsMany(butbynomeansall)Laplacetransformsofinteresttousarerat
7、ionalfunctionsofs(theprecedingexamples)N(s),D(s)—polynomialsinsAnyx(t)consistingofalinearcombinationofcomplexexponentialsfort>0orfort<0hasarationalLaplacetransform.ZerosandPolesRootsofD(s)=polesofX(s);RootsofN(s)=zerosofX(s).TherepresentationofX(s)throughi
8、tspolesandzerosinthes-planeisreferredtoasthepole-zeroplotofX(s)Example9.3:ImRe-11-2s-planeNotation:×——poleO——zeroExample9.5Thepole-zeroplotisQ:Doesx(t)haveFT?ImRe-112s-plane0Property1:TheROCofX(s)consistsofst
此文档下载收益归作者所有