欢迎来到天天文库
浏览记录
ID:62023666
大小:847.50 KB
页数:11页
时间:2021-04-14
《专题2.3 基本初等函数-3年高考2年模拟1年原创备战2018高考精品系列之数学(江苏版)(原卷版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考第二章函数概念与基本初等函数专题3基本初等函数【三年高考】1.【2017课标1,理11】设x、y、z为正数,且,则A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z2.【2017某某,理6】已知奇函数在R上是增函数,.若,,,则a,b,c的大小关系为(A)(B)(C)(D)3.【2017,理8】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg3≈0.48)(A)1033(B)1053 (C)1073
2、(D)10934.【2016高考新课标3理数改编】已知,,,则大小关系是.5.【2016高考某某理数】已知a>b>1.若logab+logba=,ab=ba,则a=,b=.6【2016高考某某理数】已知f(x)是定义在R上的偶函数,且在区间(-,0)上单调递增.若实数a满足,则a的取值X围是______.7.【2016高考某某理数】已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程恰好有两个不相等的实数解,则a的取值X围是()高考(A)(0,](B)[,](C)[,]{}(D)[,){}8.【2016高考某
3、某文数改编】已知函数满足:且.则下列四个命题中正确的命题是.①.若,则;②若,则;③若,则;④若,则9.【2015高考某某,文2】设则的大小关系是_________.10.【2015高考,理7】如图,函数的图象为折线,则不等式的解集是_____.11.【2015高考某某,理7】已知定义在上的函数(为实数)为偶函数,记,则的大小关系为____________.12.【2015高考某某,理15】已知函数,(其中).对于不相等的实数,设,.现有如下命题:(1)对于任意不相等的实数,都有;(2)对于任意的a及任意不相等的实数,都有;
4、(3)对于任意的a,存在不相等的实数,使得;(4)对于任意的a,存在不相等的实数,使得.其中的真命题有(写出所有真命题的序号).【2018年高考命题预测】纵观2015-2017高考试题,对基本初等函数的考查,大部分是以基本初等函数的性质为依托,结合运算推理解决问题,高考中一般以选择题和填空的形式考查.幂函数新课标要求较低,只要求掌握高考幂函数的概念,图像与简单性质,仅限于几个特殊的幂函数,关于幂函数常以5种幂函数为载体,考查幂函数的概念、图象与性质,多以小题形式出现,属容易题.二次函数的图象及性质是近几年高考的热点;用三个“
5、二次”间的联系解决问题是重点,也是难点.题型以选择题和填空题为主,若与其他知识点交汇,则以解答题的形式出现.指数函数在历年的高考题中占据着重要的地位.从近几年的高考形势来看,对指数函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题.为此,我们要熟练掌握指数运算法则,明确算理,能对常见的指数型函数进行变形处理.高考题目形式多以指数函数为载体的复合函数来考察函数的性质.同时它们与其它知识点交汇命题,则难度会加大.对数函数在历年的高考题中占据着重要的地位.从近几年的高考形势来看,对对数函数的考查,大
6、多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题.为此,我们要熟练掌握对数运算法则,明确算理,能对常见的对数型函数进行变形处理.高考题目形式多以对数函数为载体的复合函数来考察函数的性质.同时它们与其它知识点交汇命题,则难度会加大.基本初等函数是考察函数、方程、不等式很好的载体,预测2018年会继续加强对基本初等函数图象和性质的考察.尤其注意以基本初等函数为模型的抽象函数的考察,这种题型只给出定义域内满足某些运算性质的法则,往往集定义域、值域、单调性、奇偶性与一身,全面考察学生对函数概念和性质的理解.【20
7、18年高考考点定位】高考对基本初等函数的考查有三种主要形式:一是比较大小;二是基本初等函数的图象和性质;三是基本初等函数的综合应用,其中经常以分段函数为载体考察函数、方程、不等式等知识的相联系.【考点1】指数值、对数值的比较大小【备考知识梳理】指数函数,当时,指数函数在单调递增;当时,指数函数在单调递减.对数函数,当时,对数函数在单调递增;当时,对数函数在高考单调递减.幂函数图象永远过(1,1),且当时,在时,单调递增;当时,在时,单调递减.【规律方法技巧】指数值和对数值较大小,若指数值有底数相同或指数相同,可以考虑构造指数
8、函数和幂函数和对数函数,通过考虑单调性,进而比较函数值的大小;其次还可以借助函数图象比较大小.若底数和指数不相同时,可考虑选取中间变量,指数值往往和1比较;对数值往往和0、1比较.【考点针对训练】1.设则a,b,c的大小关系是______________________.2.设,且,则的大
此文档下载收益归作者所有