专题3.7 三点共线证法多,斜率向量均可做-2020届高考数学压轴题讲义(解答题)(原卷版).doc

专题3.7 三点共线证法多,斜率向量均可做-2020届高考数学压轴题讲义(解答题)(原卷版).doc

ID:61982080

大小:1.11 MB

页数:10页

时间:2021-04-08

专题3.7 三点共线证法多,斜率向量均可做-2020届高考数学压轴题讲义(解答题)(原卷版).doc_第1页
专题3.7 三点共线证法多,斜率向量均可做-2020届高考数学压轴题讲义(解答题)(原卷版).doc_第2页
专题3.7 三点共线证法多,斜率向量均可做-2020届高考数学压轴题讲义(解答题)(原卷版).doc_第3页
专题3.7 三点共线证法多,斜率向量均可做-2020届高考数学压轴题讲义(解答题)(原卷版).doc_第4页
专题3.7 三点共线证法多,斜率向量均可做-2020届高考数学压轴题讲义(解答题)(原卷版).doc_第5页
资源描述:

《专题3.7 三点共线证法多,斜率向量均可做-2020届高考数学压轴题讲义(解答题)(原卷版).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、专题7三点共线证法多,斜率向量均可做【题型综述】三点共线问题证题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0

2、,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.【典例指引】类型一向量法证三点共线例1(2012北京理19)(本小题共14分)已知曲线:()(Ⅰ)若曲线是焦点在轴上的椭圆,求的取值范围;(Ⅱ)设=4,曲线与轴的交点为,(点位于点的上方),直线与曲线交于不同的两点,,直线与直线交于点,求证:,,三点共线.【解析】类型二斜率法证三点共线例2.(2017•上海模拟)已知抛物线y2=4x的焦点为F,过焦点F的直线l交抛物线于A、B两点,设AB的中点为M,A、B、M在准线上的射影依次为C、D、N.(1

3、)求直线FN与直线AB的夹角θ的大小;(2)求证:点B、O、C三点共线.[来源:学科网ZXXK]【解析】类型三直线方程法证三点共线例3(2017•贵阳二模)已知椭圆C:=1(a>0)的焦点在x轴上,且椭圆C的焦距为2.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点R(4,0)的直线l与椭圆C交于两点P,Q,过P作PN⊥x轴且与椭圆C交于另一点N,F为椭圆C的右焦点,求证:三点N,F,Q在同一条直线上.【解析】类型四多种方法证三点共线例4.(2017•保定一模)设椭圆x2+2y2=8与y轴相交于A,B两点(A在B的上方),直线y=k

4、x+4与该椭圆相交于不同的两点M,N,直线y=1与BM交于G.[来源:Z_xx_k.Com](1)求椭圆的离心率;(2)求证:A,G,N三点共线.【解析】【扩展链接】1.给出,等于已知与的中点三点共线;2.给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线;【新题展示】1.【2019北京首都师范大学附属中学预测】在平面直角坐标系中,点在椭圆上,过点的直线的方程为.(Ⅰ)求椭圆的离心率;(Ⅱ)若直线与轴、轴分别相交于两点,试求面积的最小值;(Ⅲ)设椭圆的左、右焦点分别为,,点与点关于直线对称,求证:点三点共线

5、.【思路引导】(Ⅰ)求得椭圆C的a,b,c,运用离心率公式计算即可得到所求值;(Ⅱ)在直线l中,分别令x=0,y=0,求得A,B的坐标,求得三角形OAB的面积,由P代入椭圆方程,运用基本不等式即可得到所求最小值;(Ⅲ)讨论①当x0=0时,P(0,±1),②当x0≠0时,设点Q(m,n),运用对称,分别求得Q的坐标,运用三点共线的条件:斜率相等,即可得证.2.【2019广东深圳2月调研】在平面直角坐标系中,椭圆的中心在坐标原点,其右焦点为,且点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左、右顶点分别为、、是椭圆上异于,的

6、任意一点,直线交椭圆于另一点,直线交直线于点,求证:,,三点在同一条直线上.[来源:学科网]【思路引导】(1)(法一)由题意,求得椭圆的焦点坐标,利用椭圆的定义,求得,进而求得的值,即可得到椭圆的标准方程;(法二)设椭圆的方程为(),列出方程组,求得的值,得到椭圆的标准方程。(2)设,,直线的方程为,联立方程组,利用根与系数的关系和向量的运算,即可证得三点共线。3.【2019安徽合肥一模】设椭圆()的左、右焦点分别为,过的直线交椭圆于,两点,若椭圆的离心率为,的周长为.(1)求椭圆的方程;(2)设不经过椭圆的中心而平行于

7、弦的直线交椭圆于点,,设弦,的中点分别为,证明:三点共线.【思路引导】(Ⅰ)由的周长为求得,由离心率求得,从而可得的值,进而可得结果;(Ⅱ)易知,当直线的斜率不存在时,三点共线;当直线的斜率存在时,由点差法可得,,即,.同理可得,从而可得结论.【同步训练】1.已知椭圆E:+=1(a>)的离心率e=,右焦点F(c,0),过点A(,0)的直线交椭圆E于P,Q两点.(1)求椭圆E的方程;(2)若点P关于x轴的对称点为M,求证:M,F,Q三点共线;(3)当△FPQ面积最大时,求直线PQ的方程.【思路点拨】(1)由椭圆的离心率公式

8、,计算可得a与c的值,由椭圆的几何性质可得b的值,将a、b的值代入椭圆的方程计算可得答案;(2)根据题意,设直线PQ的方程为y=k(x﹣3),联立直线与椭圆的方程可得(3k2+1)x2﹣18k2x+27k2﹣6=0,设出P、Q的坐标,由根与系数的关系的分析求出、的坐标,由向量平行的坐标表示方法,分析可得证明;(3)设

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。