欢迎来到天天文库
浏览记录
ID:61982028
大小:570.50 KB
页数:4页
时间:2021-04-08
《专题2.4 极值计算先判断,单调原则不能撼-2020届高考数学压轴题讲义(解答题)(原卷版).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、【题型综述】函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)求函数极值的方法:[来源:学
2、科
3、网]①确定函数的定义域.②求导函数.③求方程的根.④检查在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值;如果在这个根的左、右两侧符号不变,则在这个根处没有极值.[来源:Z#xx#k.Com](3)利用极值求参数的取值范围:确定函数的定义域,求导数,求方程的根的情况,得关于参数的方
4、程(或不等式),进而确定参数的取值或范围.【典例指引】例1.已知函数其中⑴当时,求曲线处的切线的斜率;w.w.w.zxxk.c.o.m⑵当时,求函数的单调区间与极值.例2.已知函数的图象在处的切线过点,.(1)若,求函数的极值点;(2)设是函数的两个极值点,若,证明:.(提示)例3.已知函数在处有极值10.(1)求实数的值;(2)设,讨论函数在区间上的单调性.[来源:学科网ZXXK][来源:Zxxk.Com]【新题展示】[来源:Zxxk.Com]1.【2019浙江七彩联盟期中】已知函数.证明:函数存在唯一的极值点,并
5、求出该极值点;若函数的极值为1,试证明:.2.【2019北京石景山区期末】已知函数.(1)当时,求在处的切线方程;(2)当时,若有极小值,求实数a的取值范围.3.【2019河南驻马店市期末】已知函数(1)求函数的单调区间和的极值;(2)对于任意的,,都有,求实数的取值范围.【同步训练】1.设,.(1)令,求的单调区间;(2)已知在处取得极大值,求实数的取值范围.[来源:Z#xx#k.Com]2.已知函数,在定义域内有两个不同的极值点(I)求的取值范围;(II)求证:3.已知函数.(Ⅰ)若函数在时有极值0,求常数a,b
6、的值;(Ⅱ)若函数在点处的切线平行于x轴,求实数b的值.4.已知函数,.(1)求函数在上的最值;(2)求函数的极值点.5.设函数f(x)=lnx+ax2+x+1.(I)a=﹣2时,求函数f(x)的极值点;(Ⅱ)当a=0时,证明xex≥f(x)在(0,+∞)上恒成立.6.已知函数,,(其中,为自然对数的底数,……).(1)令,求的单调区间;(2)已知在处取得极小值,求实数的取值范围.7.已知函数().(1)若在其定义域内单调递增,求实数的取值范围;(2)若,且有两个极值点,(),求的取值范围.8.已知函数.(1)若函数
7、在和处取得极值,求的值;[来源:学#科#网](2)在(1)的条件下,当时,恒成立,求的取值范围.[来源:学科网]9.已知函数,其中为常数.(1)当,且时,判断函数是否存在极值,若存在,求出极值点;若不存在,说明理由;(2)若,对任意的正整数,当时,求证:.[来源:学.科.网Z.X.X.K][来源:学科网]10.已知函数.(1)求函数的极值点;(2)若f(x)≥x2+1在(0,2)上恒成立,求实数t的取值范围.
此文档下载收益归作者所有