欢迎来到天天文库
浏览记录
ID:61785049
大小:944.00 KB
页数:45页
时间:2021-03-20
《相似三角形综合题解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、相似三角形综合题解析 一.解答题(共22小题)1.(2008•眉山)如图,E是矩形ABCD的边DC延长线上一点,连接AE分别交BC,BD于F,G.(1)图中有全等三角形吗?(对角线分矩形所得两个三角形除外)若有,请写出一对来;若没有,请添加一个条件(不添加辅助线和不改变图中字母),使得图中有全等三角形,并写出来;(2)图中有相似三角形吗?设矩形ABCD的周长为20,对角线长为2,求DE的长,使得你找出的一对相似三角形的相似比为2:3. 2.如图(1),在锐角三角形ABC中,AB>BC>AC.D、E分别是AB、BC边上的两
2、个动点,连接DE、CD.(1)当点D、E运动时,分别在图(2)、图(3)中画出D.E运动的位置,要求在图(2)中,仅有一组三角形相似,在图(2)中,仅有两组三角形相似.(2)当AB=9,BC=8,CA=6时,选择(1)中的图(3),即有两组三角形相似时,求DE的长. 3.已知:如图,在△ABC中,AB=3,AC=2,能否在AC上(不同于A,C)找到点D,过点D作DE∥AB交于BC于E,过点E作EF∥AC交AB于F,连接FD,将△ABC分割成四个相似的小三角形,但其中至少有两个小三角形的相似比不等于1?若能,求出点D位置;
3、若不能,请说明理由. 4.如图,E为▱ABCD的边BC延长线上一点,AE与BD交于点F,与DC交于点G.(1)写出所有与△ABE相似的三角形,并选择其中一对相似三角形加以证明;(2)若BC=2CE,求的值.(3)若BC=k•CE,求的值. 5.如图1,在四边形ABCD的AB边上取一点E(点E不与A,B重合),分别连接ED,EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD的AB边上的强相似点.(1)图
4、1中,若∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;(2)如图2,点E是矩形ABCD的AB边上的一个强相似点,若DE=3,AE=BE,求矩形ABCD的面积;(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,请判断AE与BE的数量关系(要求画出示意图,不必说明理由). 6.(2013•咸宁)阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两
5、个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上
6、的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系. 7.定义:如果一个图形经过分割,能分为4个与自身相似的图形,我们称它为“能四阶自相似分割图形”.如图1,任意△ABC取各边的中点D、E、F,连接DE、EF、DF,分得的△ADF、△BDE、△DEF、△CEF显然都与△ABC相似,则任意△ABC是“能四阶自相似分割图形”.(1)小明发现:任意矩形ABCD(如图2)也是“能四阶自相似分割图形”.请你利用尺规作图作出分割线.(保留作图痕迹,不要求写作法)(2)同组的小华思考后提出:能不能
7、设计一种方案,将任意△ABC分割成四个与△ABC相似的小三角形,且其中至少有两个小三角形的相似比不为1?为了研究方便,小华取AB=6,AC=4,BC=5,(如图3)并成功地设计出了分法.请你完成小华的分法,并简单地说明理由. 8.(2008•闸北区二模)如图所示,已知边长为3的等边△ABC,点F在边BC上,CF=1,点E是射线BA上一动点,以线段EF为边向右侧作等边△EFG,直线EG,FG交直线AC于点M,N,(1)写出图中与△BEF相似的三角形;(2)证明其中一对三角形相似;(3)设BE=x,MN=y,求y与x之间的函
8、数关系式,并写出自变量x的取值范围;(4)若AE=1,试求△GMN的面积. 9.(2011•浙江模拟)△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使
此文档下载收益归作者所有