欢迎来到天天文库
浏览记录
ID:34037190
大小:914.00 KB
页数:46页
时间:2019-03-03
《相似综合题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.相似综合题(解析版)一.解答题(共35小题)1.(2017•娄底)如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC的中点,OE交CD于点F.(1)若∠BCD=36°,BC=10,求的长;(2)判断直线DE与⊙O的位置关系,并说明理由;(3)求证:2CE2=AB•EF.【考点】S9:相似三角形的判定与性质;MB:直线与圆的位置关系.菁优网版权所有【分析】(1)连接OD,根据弧长公式,求出圆心角∠DOB即可解决问题;(2)欲证明DE是切线,只要证明OD⊥DE即可;(3)首先证明EF是△ADC的中位线,再证明△ACD∽△ABC即可解决问题;【解答】解:(1)
2、连接OD.∵∠BCD=36°,∴∠DOB=72°∴的长==π.(2)连接OD.∵AE=EC,OB=OC,∴OE∥AB,∵CD⊥AB,∴OE⊥CD,∵OD=OC,∴∠DOE=∠COE,...在△EOD和△EOC中,,∴△EOD≌△EOC,∴∠EDO=∠ECO=90°,∴OD⊥DE,∴DE是⊙O的切线.(3)∵OE⊥CD,∴DF=CF,∵AE=EC,∴AD=2EF,∵∠CAD=∠CAB,∠ADC=∠ACB=90°,∴△ACD∽△ABC,∴AC2=AD•AB,∵AC=2CE,∴4CE2=2EF•AB,∴2CE2=EF•AB.【点评】本题考查相似三角形的判定和性质、切线的判定、三角形的中位线定理
3、、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型. 2.(2017•攀枝花)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质.菁优网版权所有【分析】(1)若要证明直线CA是⊙O的切线,则只要证明∠ACB=90°即可;(2)易证△ADF∽△ACE,由相似三角形的性质以及结合已知条件即可求出的值.【解答】解:(1)证明:∵BC为直径,∴∠BDC=∠ADC=9
4、0°,∴∠1+∠3=90°∵AE平分∠BAC,CE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°,...∵∠3=∠4,∴∠2+∠5=90°,∴∠ACB=90°,即AC⊥BC,∴直线CA是⊙O的切线;(2)由(1)可知,∠1=∠2,∠3=∠5,∴△ADF∽△ACE,∴,∵BD=DC,∴tan∠ABC=,∵∠ABC+∠BAC=90°,∠ACD+∠BAC=90°,∴∠ABC=∠ACD,∴tan∠ACD=,∴sin∠ACD=,∴.【点评】本题考查了切线的判断和性质、相似三角形的判断和性质、圆周角定理以及三角函数的性质,熟记切线的判断和性质是解题的关键. 3.(2017•十堰)已知AB为⊙
5、O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.(1)如图1,若CD=CB,求证:CD是⊙O的切线;...(2)如图2,若F点在OB上,且CD⊥DF,求的值.【考点】S9:相似三角形的判定与性质;M2:垂径定理;ME:切线的判定与性质.菁优网版权所有【分析】(1)连接DO,CO,易证△CDO≌△CBO,即可解题;(2)连接AD,易证△ADF∽△BDC和△ADE∽△BDA,根据相似三角形对应边成比例的性质即可解题.【解答】解:(1)连接DO,CO,∵BC⊥AB于B,∴∠ABC=90°,在△CDO与△CBO中,,∴△CDO≌△CBO,∴∠
6、CDO=∠CBO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)连接AD,∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∵在△ADF和△BDC中,,∴△ADF∽△BDC,...∴=,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∵在△ADE和△BDA中,,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴=1.【点评】本题考查了相似三角形的判定和性质,考查了全等三角形的判定和性质,本题中求证△ADF∽△BDC和
7、△ADE∽△BDA是解题的关键. 4.(2017•广东)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.菁
此文档下载收益归作者所有