简单线性规划(2).ppt

简单线性规划(2).ppt

ID:61671752

大小:98.50 KB

页数:14页

时间:2021-03-06

简单线性规划(2).ppt_第1页
简单线性规划(2).ppt_第2页
简单线性规划(2).ppt_第3页
简单线性规划(2).ppt_第4页
简单线性规划(2).ppt_第5页
资源描述:

《简单线性规划(2).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、简单线性规划(2)xyo第二课时可行域上的最优解作出不等式组 表示的平面区域55x=1x-4y+3=03x+5y-25=01ABCC:(1.00,4.40)A:(5.00,2.00)B:(1.00,1.00)Oxy问题1:x有无最大(小)值?问题2:y有无最大(小)值?问题3:2x+y有无最大(小)值?某公司承担了每天至少搬运280t水泥的任务,已知该公司有6辆A型卡车和B型卡车,已知A型卡车每天每辆的运载量为30t,成本费为0.9千元,B型卡车每天每辆的运载量为40t,成本费为1千元。(1)假设你是公司的调度员,请你按要求设计出公司每天的排车方案。(2)设每天派出

2、A型卡车x辆,B型卡车y辆,公司每天花费成本为Z千元,写出x、y应满足的条件以及Z与x、y之间的函数关系式。方案方案一方案二方案三方案四A型卡车B型卡车44546463Z=0.9x+y3x+4y≥280≤x≤60≤y≤4某公司承担了每天至少搬运280t水泥的任务,已知该公司有6辆A型卡车和B型卡车,已知A型卡车每天每辆的运载量为30t,成本费为0.9千元,B型卡车每天每辆的运载量为40t,成本费为1千元。(1)假设你是公司的调度员,请你按要求设计出公司每天的排车方案。(2)设每天派出A型卡车x辆,B型卡车y辆,公司每天花费成本为Z千元,写出x、y应满足的条件以及Z与x、y

3、之间的函数关系式。(3)如果你是公司的经理,为使公司所花的成本费最小,每天应派出A型卡车、B型卡车各为多少辆Z=0.9x+y3x+4y≥280≤x≤60≤y≤4Oyx有关概念由x,y的不等式(或方程)组成的不等式组称为x,y的约束条件。关于x,y的一次不等式或方程组成的不等式组称为x,y的线性约束条件。欲达到最大值或最小值所涉及的变量x,y的解析式称为目标函数。关于x,y的一次目标函数称为线性目标函数。求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题。满足线性约束条件的解(x,y)称为可行解。所有可行解组成的集合称为可行域。使目标函数取得最大值或最小值的

4、可行解称为最优解。[练习]解下列线性规划问题:1、求z=2x+y的最大值,使式中的x、y满足约束条件:解线性规划问题的步骤:(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;(3)求:通过解方程组求出最优解;(4)答:作出答案。(1)画:画出线性约束条件所表示的可行域;几个结论:1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义——在y轴上的截距或其相反数。2、求z=3x+5y的最大值和最小值,使式中的x、y满足约束条件:解线

5、性规划问题的步骤:(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;(3)求:通过解方程组求出最优解;(4)答:作出答案。小结:(1)画:画出线性约束条件所表示的可行域;几个结论:1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义——在y轴上的截距或其相反数。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。