中考数学专题---解直角三角形的应用

中考数学专题---解直角三角形的应用

ID:6167042

大小:2.43 MB

页数:25页

时间:2018-01-05

中考数学专题---解直角三角形的应用_第1页
中考数学专题---解直角三角形的应用_第2页
中考数学专题---解直角三角形的应用_第3页
中考数学专题---解直角三角形的应用_第4页
中考数学专题---解直角三角形的应用_第5页
资源描述:

《中考数学专题---解直角三角形的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、中考数学专题---解直角三角形的应用1.(2010红河自治州)如图,一架飞机在空中P处探测到某高山山顶D处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB的方向匀速飞行,飞行10秒到山顶D的正上方C处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)2.(2010遵义市)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=,坡长AB=,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F=,求AF的长度(结果精确到1米,参考数据:,).AB12km米PCDG60°图1图23.(

2、2010台州市)施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB=4米,斜面距离BC=4.25米,斜坡总长DE=85米.(1)求坡角∠D的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm的长方体台阶来铺,需要铺几级台阶?17cm图3ABCDEF4(2010年兰州)如图4是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B

3、点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)5.(2010年长沙)为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.图4图56.(2010年金华)在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知

4、风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01m;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)7.(2010年天津市)永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图7,他们在C处测得摩天轮的最高点A的仰角为,再往摩天轮的

5、方向前进50m至D处,测得最高点A的仰角为.求该兴趣小组测得的摩天轮的高度AB(,结果保留整数).AB45°60°CED图6ABCD45°60°图78.(2010宁德)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米,求:⑴装饰画与墙壁的夹角∠CAD的度数(精确到1°);⑵装饰画顶部到墙壁的距离DC(精确到0.01米).ACDEB图89.(2010昆

6、明)热气球的探测器显示,从热气球A处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A处与高楼的水平距离为60m,这栋高楼有多高?(结果精确到0.1m,参考数据:)图910.(2010山东青岛市)小明家所在居民楼的对面有一座大厦AB,AB=米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)37°BAD48°C图1011.(2010莱芜)2009年首届中国国际航空体育节在莱芜雪野举办期间

7、,在市政府广场进行了热气球飞行表演.如图1,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:)BAC图1112.(2010安徽芜湖)图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.图1213.(2009台州)如图,有一段斜坡长为10米,坡角,为方便残疾人的轮

8、椅车通行,现准备把坡角降为5°.(1)求坡高;(2)求斜坡新起点与原起点的距离(精确到0.1米).13题图DCBA5°12°14.(2009江苏)如图,在航线的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。