欢迎来到天天文库
浏览记录
ID:61443688
大小:340.00 KB
页数:14页
时间:2021-01-31
《二次根式及性质 练习.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、二次根式及性质.知识要点:(1)平方根与立方根a.平方根的概念:如果一个数的平方等于a,那么这个数叫做a的平方根。用表示。例如:因为。b.算术平方根的概念:正数a的正的平方根叫做a的算术平方根。0的算术平方根为0。用表示a的算术平方根。例如:3的平方根为,其中为3的算术平方根。c.立方根的概念:如果一个数的立方等于a,那么这个数就叫做a的立方根,用表示。例如:因为。d.平方根的特征:①一个正数有两个平方根,它们互为相反数。②0有一个平方根,就是0本身。③负数没有平方根。e.立方根的特征:①正数有一个正的立方根。②
2、负数有一个负的立方根。③0的立方根为0。④。⑤立方根等于其本身的数有三个:1,0,-1。(2)二次根式a.二次根式的概念:形如(a≥0)的式子叫做二次根式(二次根式中,被开方数一定是非负数,否则就没有意义,并且根式)。b.二次根式的基本性质:①②③④⑤c.二次根式的乘除法①②d.最简二次根式的标准:①被开方数的因数是整数,因式是整式(分母中不含根号)。②被开方数中不含开得尽方的因数或因式。e.同类二次根式的识别:几个二次根式化简到不能再化简为止后,被开方数相同,则这几个二次根式是同类二次根式。例如:是同类二次根式
3、,是同类二次根式。f.二次根式的加减法运算法则:在加减运算中,一般把二次根式化简后再运算,运算时只有同类二次根式才能合并(合并时,只合并根号外的因式,被开方数不变),合并同类二次根式之后的式子作为最后的结果(注意:最后结果要尽可能最简)。h.使分母不带根号(分母有理化)常用方法:①化去分母中的根号关键是确定与分母相乘后,其结果不再含根号的因式。i.形如的式子,利用,分子、分母同乘以得ii.形如的式子利用平方差公式,分子、分母同时乘以得注意:分子、分母同时所乘以的式子必须不为0。即如:,这样运算不一定正确,因为有可
4、能为0。②化去分母中的根号,有时通过约分来解决如:(3)实数与数轴:a.无理数的概念:无限不循环小数叫做无理数。b.实数的概念:有理数与无理数统称为实数。c.实数的分类:①按实数的定义分类②按正负分类d.实数与数轴上的点之间的关系:实数与数轴上的点是一一对应的。数轴上的任一点表示的数,不是有理数,就是无理数。数轴上的任一点必定表示一个实数;反过来每一个实数都可以用数轴上的点来表示。e.常见的几种无理数:①根号型:如等开方开不尽的数。②构造型:如1.……等无限不循环小数。③化简后含有(圆周率)的数。④在今后学习中还
5、会遇到三角函数型等。f.实数比较大小的几种常用方法:①数轴比较法:将两实数分别表示在数轴上,右边的数总比左边的数大,表示在同一点上的两个数相等。②差值比较法:设a、b是任意两实数,若,则;若,则a
6、.要使下列各式有意义,字母x的取值必须分别满足什么条件?(1)(2)(3)(4)解析:二次根式有意义的条件是被开方数为非负数,分式有意义的条件是分母不为0,对于含有多个表达式的式子需同时让每一个式子有意义,此表达式才有意义。例3.已知互为相反数,求的值。 例4.计算下列各式:(1)(2)(3)(4)(5)(6)(7)解析:(1)由公式可以直接得到。(2)根据积的乘方法则可以求解。(3)利用进行乘法计算。(4)利用进行乘法计算,但应知道。(5)利用进行计算。(6)和(7)应先对式子中的每个二次根式进行化简,然后对同
7、类二次根式进行合并。例5.化简下列各式:(1)(2)(3)(4)(5)(6)解析:(1)(2)(3)都是形如的化简,关键是正确理解和使用(4)运用对二次根式进行化简时尽可能将被开方数的因式写成平方的形式。(5)(6)去掉分母中的根号,常用的方法是使分母化为(或)的形式。例6.已知a、b均为有理数,并且满足等式:,求a、b的值。解析:因为所以因为a、b均是有理数所以都是有理数所以有解得 例7.比较的大小。分析:比较的大小,可先将各数的近似值求出来再比较大小,本题还有一种方法“分子有理化”解:∵又∵∴ 例8.观察下列
8、各式及其验证过程:验证:验证:(1)按照上述两个等式及其验证过程的基本思路猜想的变形结果并进行验证。(2)针对上述各式反映的规律,写出用n(n为任意自然数,且)表示的等式,并给出证明。【模拟试题】(答题时间:80分钟)一.填空题1.计算=____________;=____________。2.若代数式有意义,则x的取值范围是____________。3.计算:=____
此文档下载收益归作者所有