欢迎来到天天文库
浏览记录
ID:61046847
大小:292.55 KB
页数:9页
时间:2021-01-20
《2020_2021学年新教材高中数学第六章平面向量初步6.2.1向量基本定理知识基础练含解析新人教B版必修第二册20201127198.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、6.2.1 向量基本定理必备知识基础练进阶训练第一层知识点一共线向量基本定理及应用1.已知向量a,b是两个非零向量,在下列四个条件中,一定能使a,b共线的是( )①2a-3b=4e且a+2b=-2e;②存在相异实数λ,μ,使λa-μb=0;③xa+yb=0(其中实数x,y满足x+y=0);④已知梯形ABCD,其中=a,=b.A.①②B.①③C.②D.③④2.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足=+λ,λ∈(0,+∞),则P点的轨迹所在直线一定通过△ABC的( )A.外心B.内心C.重心D.
2、垂心3.已知e1,e2是两个不共线的向量,a=k2e1+e2与b=2e1+3e2是两个平行的向量,则k=________.知识点二基底的理解与应用4.若{e1,e2}是平面α内的一组基底,则下列四组向量能作为平面α的一组基底的是( )A.{e1-e2,e2-e1}B.C.{2e2-3e1,6e1-4e2}D.{e1+e2,e1-e2}5.如图,在△ABC中,P为BC边上一点,且=.(1)用基底{,}表示=________;(2)用基底{,}表示=________.6.如图,在△ABC中,点D,E,F依次是边AB的四等
3、分点,则=________.(以=e1,=e2为基底)知识点三平面向量基本定理的应用7.已知O,A,M,B为平面上四点,且=λ+(1-λ)·,实数λ∈(1,2),则( )A.点M在线段AB上B.点B在线段AM上C.点A在线段BM上D.O,A,M,B四点一定共线8.在平行四边形ABCD中,E和F分别是边CD和BC的中点.若=λ+μ,其中λ,μ∈R,则λ+μ=________.9.已知a,b是两个不共线的向量,若它们起点相同,a,b,t(a+b)三个向量的终点在一条直线上,则实数t=________.关键能力综合练进阶训
4、练第二层一、选择题1.设{e1,e2}是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( )A.{e1+e2,e1-e2}B.{3e1-2e2,4e2-6e1}C.{e1+2e2,e2+2e1}D.{e2,e1+e2}2.设{e1,e2}为基底向量,已知向量=e1-ke2,=2e1-e2,=3e1-3e2,若A,B,D三点共线,则k的值是( )A.2B.-3C.-2D.33.若M是△ABC的重心,则下列各向量中与共线的是( )A.++B.++C.++D.3+4.点P是△ABC所在平面内一点,若=λ+
5、,其中λ∈R,则点P一定在( )A.△ABC内部B.AC边所在的直线上C.AB边所在的直线上D.BC边所在的直线上5.若点O是平行四边形ABCD两对角线的交点,=4e1,=6e2,则3e2-2e1=( )A.B.C.D.6.(探究题)在△ABC中,设M是边BC上任意一点,N为AM的中点,若=λ+μ,则λ+μ的值为( )A.B.C.D.1二、填空题7.▱ABCD的两条对角线相交于点M,且=a,=b,用a,b表示,则=________.8.设{e1,e2}是平面内的一组基向量,且a=e1+2e2,b=-e1+e2,则
6、向量e1+e2可表示为另一组向量a,b的线性组合,则e1+e2=________a+________b.9.(探究题)在△ABC中,点D在BC边上,且=4,=r+s,则3r+s的值为________.三、解答题10.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.(1)证明:a,b可以作为一组基底;(2)以a,b为基底,求向量c=3e1-e2的分解式.学科素养升级练进阶训练第三层1.(多选题)如果e1,e2是平面α内两个不共线的向量,λ,μ是实数,那么下列说法中不正确的是( )A.λe1+μe2
7、可以表示平面α内的所有向量B.对于平面α内任意一个向量a,使得a=λe1+μe2的实数对(λ,μ)有无穷多个C.若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则有且只有一个实数λ,使得λ1e1+μ1e2=λ(λ2e1+μ2e2)D.若实数λ,μ使得λe1=μe2,则λ=μ=02.如图,过△ABC的重心G作一直线分别交AB,AC于D,E,连接AG并延长交BC于点F,若=x,=y(xy≠0),则+的值为( )A.4B.3C.2D.13.(学科素养—运算能力)如图所示,平面内有三个向量,,,其中与的夹角为120°,与的
8、夹角为30°,且
9、
10、=
11、
12、=1,
13、
14、=2,若=λ+μ(λ,μ∈R),求λ+μ的值.6.2 向量基本定理与向量的坐标6.2.1 向量基本定理必备知识基础练1.解析:由2a-3b=-2(a+2b)得到b=-4a,故①可以;∵λa-μb=0,∴λa=μb,故②可以;当x=y=0时,有xa+yb=0,但b与a不一定共线,故③不可以;梯形A
此文档下载收益归作者所有