欢迎来到天天文库
浏览记录
ID:60933510
大小:1.04 MB
页数:12页
时间:2021-01-03
《【高考数学】专题1 以函数与方程、不等式相综合为背景的选择题(教师版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题一压轴选择题第一关以函数与方程、不等式相综合为背景的选择题本类压轴题常以超越方程、分段函数、抽象函数等为载体,达到考查函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等目的。要注意函数与方程以及不等式的关系,进行彼此之间的转化是解决该类题的关键.解决该类问题的途径往往是构造函数,进而研究函数的性质,利用函数性质去求解问题是常用方法,其间要注意导数的应用.【典例解剖】类型一用函数与方程求解零点问题典例1.设函数若关于的方程(且)在区间内恰有5个不同的根,则实数的取值范围是A.B.C.D.【答案】C【名师指点】
2、求解零点问题时,往往转化为的根求解,若该方程不易解出,可考虑数形结合转化为两熟悉图象的交点问题求解.本题首先应正确求出函数的解析式,准确画出函数图象,注意分段函数在分界点处的连续性以及对参数的范围的讨论,根据方程解的个数确定图像交点个数,“临界点”和的函数值要倍加关注.【举一反三】已知函数(且)在上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是()A.B.C.D.【答案】C类型二用函数与方程求解不等式问题典例2.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集是()A.B.C.D.[【答案
3、】B【解析】设,则,所以是上的减函数,由于为奇函数,所以,因为即,结合函数的单调性可知,所以不等式的解集是,故选B.【名师指点】结合已知条件,联想构造函数,利用导数判断其单调性,利用单调性解解抽象不等式问题是解题关键.【举一反三】己知定义在上的可导函数的导函数为,满足,且为偶函数,,则不等式的解集为()A.B.C.D.[【答案】D类型三用构造法求解问题[典例3设,,且满足,则()A.1B.2C.3D.4【答案】D.【解析】令,则的图象关于原点点对称,由题设得:,即,∴,即.选D.【名师指点】解题中若遇到有关不等式、方程及最值之
4、类问题,设法建立起目标函数,并确定变量的限制条件,用函数观点加以分析,常可使问题变得明了,从而易于找到理想的解题途径,构造函数,利用函数性质解决问题是构造函数法蕴含的数学思想.【举一反三】设函数,.若当时,不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】D【解析】易得是奇函数,在上是增函数,又,故选D.类型四关于复合方程的解的问题典例4.已知实数若关于的方程有三个不同的实根,则的取值范围为()A.B.C.D.【答案】A【解析】设,作出函数的图象,如图所示,则时,有两个根,当时,有一个根,若关于的方程有三个不同的实根
5、,则等价为由两个不同的实数根,且或,当时,,此时由,解得或,满足有两个根,有一个根,满足条件;当时,设,则即可,即,解得,综上实数的取值范围为,故选A.【名师指点】求解复合方程问题时,往往把方程分解为和处理,先从方程中求,再带入方程中求的值.【举一反三】若函数有极值点,,且,则关于的方程的不同实根的个数是()A.3B.4C.5D.6【答案】A.【解析】函数有极值点,,说明方程的两根为,,∴方程的解为或,若,即是极大值点,是极小值点,由于,∴是极大值,有两解,,只有一解,∴此时只有解,若,即是极小值点,是极大值点,由于,∴是极小
6、值,有解,,只有一解,∴此时只有解,综上可知,选A.【精选名校模拟】1.设函数,若函数有三个零点,,,则等于.【答案】2.若方程有四个不同的实数根,且,则的取值范围是()A.B.C.D.【答案】B【解析】方程有四个不同的实数根,在同一坐标系内作出函数与函数的图象如下图所示,所以是方程的两根,是方程的两根,由求根公式得,且,所以,令,由得,函数在区间递增,在区间递减,又,所以所求函数的取值范围是,故选B.3.定义在上的奇函数满足,且当时,恒成立,则函数的零点的个数为()A.B.C.D.【答案】C【解析】因为当时,,所以在上单调递
7、增,又函数为奇函数,所以函数为偶函数,结合,作出函数与的图象,如图所所示,由图象知,函数的零点有3个,故选C.4.设定义域为的函数若关于的方程有7个不同的实数解,则()A.6B.4或6C.6或2D.2【答案】D5.已知函数是定义在上的偶函数,且,当时,.则关于的方程在上的所有实数解之和为().A.-7B.-6C.-3D.-1【答案】A【解析】因为函数是偶函数,所以,所以函数是周期为2的偶函数,如图画出函数图像,两个函数在区间有7给交点,中间是,其余6个交点关于对称,所以任一组对称点的横坐标之和为-2,所以这7个交点的横坐标之和
8、为,故选A.6.已知定义域为的偶函数,其导函数为,对任意,均满足:.若,则不等式的解集是( )A.B.C.D.【答案】C7.【河南百校联盟2017届高三11月质检】已知函数满足,当时,,若在上,方程有三个不同的实根,则实数的取值范围是()A.B.C.D.【答案】D【解析】试
此文档下载收益归作者所有