解析几何专题训练(高考仿真题).doc

解析几何专题训练(高考仿真题).doc

ID:60838766

大小:358.50 KB

页数:2页

时间:2020-12-21

解析几何专题训练(高考仿真题).doc_第1页
解析几何专题训练(高考仿真题).doc_第2页
资源描述:

《解析几何专题训练(高考仿真题).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、解析几何专题训练(高考仿真题)1.平面内与两定点,连线的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.(Ⅰ)求曲线的方程,并讨论的形状与值得关系;(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在上是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。2.如图,已知、是抛物线:上的两个不同的点,且,,直线是线段的垂直平分线.设椭圆的方程为.(1)当、在上移动时,求直线的斜率的取值范围;(2)已知直线与抛物线交于、两点,与椭圆交于、两点,设线段的中点为,线段的中点为,若,求椭圆的离心率的取值范围.

2、3.定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆.(1)若椭圆,判断与是否相似?如果相似,求出与的相似比;如果不相似,请说明理由.(2)写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点关于直线对称,求实数的取值范围;(3)如图,直线与两个“相似椭圆”和分别交于点和点,证明:.4.已知椭圆C1:(a>b>0)的离心率为,连接椭圆的四个顶点得到的四边形的面积为.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为

3、F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)设O为坐标原点,取C2上不同于O的点S,以OS为直径作圆与C2相交另外一点R,求该圆的面积最小时点S的坐标.第2页高三理1250,双,21-08-24第2页5.已知椭圆与双曲线有公共的焦点,过椭圆E的右顶点及任意作直线l,设直线l交抛物线:y2=2x于M、N两点,且OM丄ON.(I)求双曲线的焦点坐标和椭圆E的方程;(II)设P是椭圆E上第一象限内的点,点P关于原点0的对称点为A、关于x轴的对称点为Q,线段PQ与x

4、轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA、PB是否相互垂直?并证明你的结论.6.已知,记点P的轨迹为E.(1)求轨迹E的方程;(2)若直线l过点F2且与轨迹E交于P、Q两点.(i)无论直线l绕点F2怎样转动,在x轴上总存在定点,使恒成立,求实数m的值.(ii)过P、Q作直线的垂线PA、OB,垂足分别为A、B,记,求λ的取值范围.7、已知椭圆上存在一点到椭圆左焦点的距离与到椭圆右准线的距离相等.(I)求椭圆的离心率的取值范围;(II)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆的方程;(Ⅲ)若直线与(II)中所述椭

5、圆相交于、两点(、不是左右顶点),且以为直径的圆经过椭圆的右顶点,求证:直线过定点,并求出该定点坐标.8.如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.第2页高三理1250,双,21-08-24第2页

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。