欢迎来到天天文库
浏览记录
ID:6079047
大小:105.50 KB
页数:3页
时间:2018-01-02
《一句话一类题立体几何多面体与外接球问题专项归纳》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、一句话一类题立体几何多面体与外接球问题专项归纳1、一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在一个球面上,则这个球的表面积是( )A.16πB.20πC.24πD.32π2、一个正四面体的所有棱长都为,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πC.3πD.6π3.在半球内有一个内接正方体,试求这个半球的体积与正方体的体积之比.4.一个正四面体的所有棱长都为,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πC.3πD.6π1、答案:C解:由题意知,该棱柱是一个长方体,其长、宽、高分别为2,2,4.所以其外接球的
2、半径R==.所以球的表面积是S=4πR2=24π.2、答案:A以四面体的棱长为正方体的面对角线构造正方体,则正方体内接于球,正方体棱长为1,则体对角线长等于球的直径,即2R=,所以S球=4πR2=3π.3、解将半球补成整个的球(见题中的图),同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体刚好是这个球的内接长方体,那么这个长方体的体对角线便是它的外接球的直径.设原正方体棱长为a,球的半径为R,则根据长方体的对角线性质,得(2R)2=a2+a2+(2a)2,即4R2=6a2.所以R=a.从而V半球=R3==a3,V正方体=a3.因此V半球∶V正方体=a3∶a3=π∶2.4答案:A
3、解析:以PA,PB,PC为棱作长方体,则该长方体的外接球就是三棱锥P-ABC的外接球,所以球的半径R==2,所以球的表面积是S=4πR2=16π.
此文档下载收益归作者所有