资源描述:
《第4讲教育统计应用2:几种假设检验的Excel实现ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、信息技术与数学教学华东师范大学数学系万福永Excel在教育统计分析中的应用之二:几种假设检验的Excel实现第四讲一、常见的概率分布(一)教育统计理论基础(二)在Excel软件中的实现(三)实际应用实例与Excel解答二、差异显著性检验(一)教育统计理论基础(二)在Excel软件中的实现(三)实际应用实例与Excel解答三、差异显著性检验之一:单侧检验四、差异显著性检验之二:双侧检验一、常见的概率分布(一)教育统计理论基础1.二项分布:是一种离散型随机变量的概率分布一、常见的概率分布(一)教育统计理论基础2.正态
2、分布:是一种连续型随机变量的概率分布一、常见的概率分布(二)在Excel软件中的实现1.BINOMDIST(k,n,p,0):计算二项分布的分布律;BINOMDIST(k,n,p,1):计算二项分布的累积分布。【BINOMDIST函数详解】:用途:返回一元二项式分布的概率分布律/累积分布。BINOMDIST函数适用于固定次数的独立实验,实验的结果只包含成功或失败二种情况,且成功的概率在实验期间固定不变。一、常见的概率分布(二)在Excel软件中的实现语法:BINOMDIST(Number,Trials,Proba
3、bility,Cumulative)参数:Number为实验成功的次数,Trials为独立实验的次数,Probability为一次实验中成功的概率,Cumulative是一个逻辑值,用于确定函数的形式。如果Cumulative为TRUE,则BINOMDIST函数返回累积分布函数,即至多Number次成功的概率;如果为FALSE,返回概率密度函数,即Number次成功的概率。一、常见的概率分布(二)在Excel软件中的实现1.BINOMDIST(k,n,p,0):计算二项分布分布律;BINOMDIST(k,n,p,
4、1):计算二项分布累积分布。实例:抛硬币的结果不是正面就是反面,第一次抛硬币为正面的概率是0.5,则掷硬币10次正面朝上6次的概率为“=BINOMDIST(6,10,0.5,FALSE)”,计算的结果等于0.205078。累积概率为“=BINOMDIST(6,10,0.5,TRUE)”,计算的结果等于0.828125。一、常见的概率分布(二)在Excel软件中的实现2.NORMDIST(x,µ,σ,0):计算正态分布N(µ,σ2)的概率密度函数f(x)在x处的函数值;NORMDIST(x,µ,σ,1):计算正态分
5、布N(µ,σ2)累积分布函数F(x)在x的函数值。【NORMDIST函数详解】:用途:返回给定平均值和标准差的正态分布的概率密度函数/分布函数的值。一、常见的概率分布(二)在Excel软件中的实现语法:NORMDIST(X,Mean,Standard_dev,Cumulative)参数:X为需要计算其分布的数值,Mean是分布的算术平均值,Standard_dev是分布的标准方差;Cumulative为一逻辑值,指明函数的形式。如果Cumulative为TRUE,则NORMDIST函数返回累积分布函数;如果为FA
6、LSE,则返回概率密度函数。一、常见的概率分布(二)在Excel软件中的实现实例:公式“=NORMDIST(42,40,1.5,FALSE)”返回概率密度函数值:0.109340。公式“=NORMDIST(42,40,1.5,TRUE)”返回累积分布函数值:0.908789。一、常见的概率分布例1:一个学生做10题正误题时,做对不同题数的概率分布(假设:做对每题的概率p=1/2;做错的概率为1/2)做对题数012345678910出现方式数1104512021025221012045101(三)实际应用实例与Ex
7、cel解答一、常见的概率分布B3中输入的计算公式是=BINOMDIST(A3,$B$1,$B$2,0),而C3中输入的计算公式是=BINOMDIST(A3,$B$1,$B$2,1);正态分布图偏正态分布1.假设检验的基本原理零假设(虚无假设):是关于当前样本所属的总体(指参数)与假设总体(指参数)无区别的假设,一般H0表示。备择假设(研究假设):是关于当前样本所属的总体(指参数)与假设总体(指参数)相反的假设,一般用H1表示。由于直接检验备择假设的真实性困难,假设检验一般都是从零假设出发,通过零假设的不真实性来证
8、明备假设的真实性。二、差异显著性检验(一)教育统计理论基础二、差异显著性检验(一)教育统计理论基础(a)左侧检验(b)右侧检验(c)双侧检验二、差异显著性检验(一)教育统计理论基础二、差异显著性检验2.显著性水平两种水平:(1)α=0.05,显著性水平为0.05,即统计推断时可能犯错误的概率5%,也就是在95%的可靠程度上进行检验;(2)α=0.01,显著性水平为0.01