2014年高考数学文科分类汇编:函数与导数.doc

2014年高考数学文科分类汇编:函数与导数.doc

ID:60747681

大小:4.85 MB

页数:44页

时间:2020-12-13

2014年高考数学文科分类汇编:函数与导数.doc_第1页
2014年高考数学文科分类汇编:函数与导数.doc_第2页
2014年高考数学文科分类汇编:函数与导数.doc_第3页
2014年高考数学文科分类汇编:函数与导数.doc_第4页
2014年高考数学文科分类汇编:函数与导数.doc_第5页
资源描述:

《2014年高考数学文科分类汇编:函数与导数.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数学B单元函数与导数B1 函数及其表示14.、[2014·安徽卷]若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=则f+f=______.14. [解析]由题易知f+f=f+f=-f-f=-+sin=.2.、[2014·北京卷]下列函数中,定义域是R且为增函数的是(  )A.y=e-xB.y=x3C.y=lnxD.y=

2、x

3、2.B [解析]由定义域为R,排除选项C,由函数单调递增,排除选项A,D.21.、、[2014·江西卷]将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数123…n,F(n)为这个数的位数(

4、如n=12时,此数为1112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤2014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n

5、h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.21.解:(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=.(2)F(n)=(3)当n=b(1≤b≤9,b∈N*),g(n)=0

6、;当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,b∈N)时,g(n)=k;当n=100时,g(n)=11,即g(n)=1≤k≤9,0≤b≤9,k∈N*,b∈N,同理有f(n)=由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90,所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}.当n=9时,p(9)=0.当n=90时,p(90)===.当n=10k+9(1≤k≤8,k∈N*)时,p(n)===,由y=关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p

7、(n)的最大值为p(89)=.又<,所以当n∈S时,p(n)的最大值为.3.[2014·山东卷]函数f(x)=的定义域为(  )A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)3.C [解析]若函数f(x)有意义,则log2x-1>0,∴log2x>1,∴x>2.B2反函数5.[2014·全国卷]函数y=ln(+1)(x>-1)的反函数是(  )A.y=(1-ex)3(x>-1)B.y=(ex-1)3(x>-1)C.y=(1-ex)3(x∈R)D.y=(ex-1)3(x∈R)5.D [解析]因为y=ln(+1),所以x=(ey-1)3.因为

8、x>-1,所以y∈R,所以函数y=ln(+1)(x>-1)的反函数是y=(ex-1)3(x∈R).B3函数的单调性与最值2.、[2014·北京卷]下列函数中,定义域是R且为增函数的是(  )A.y=e-xB.y=x3C.y=lnxD.y=

9、x

10、2.B [解析]由定义域为R,排除选项C,由函数单调递增,排除选项A,D.4.、[2014·湖南卷]下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(  )A.f(x)=B.f(x)=x2+1C.f(x)=x3D.f(x)=2-x4.A [解析]由偶函数的定义,可以排除C,D,又根据单调性,可得B不对.1

11、9.、、、[2014·江苏卷]已知函数f(x)=ex+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)

12、x(x>0),则t>1,所以m≤-=-对任意t>1成立.因为t-1++1≥2+1=3,所以-≥-,当且仅当t=2,即x=ln2时等号成立.因此实数m的取值范围是.(3)令函数g(x)=ex+-a(-x3+3x),则g′(x)=ex-+3a(x2-1).当x≥1时,ex->0,x2-1≥0.又a>0,故g′(x)>0,所以g(x)是[1,+∞)上的单调递增函数,因此g(x)在[1,+∞)上的最小值是g(1)=e+e-1-2a.由于存在x0∈[1,+∞),使ex0+e-x0-a(-x+3x0)<0成立,当且仅当最小值g(1)<0,故e+e-1-2a<0,即

13、a>.令函数h(x)=x-(e-1)lnx-1,则h′(x)=1-.令h′(x)=0,得x=e

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。