主成分分析与全成分分析区别

主成分分析与全成分分析区别

ID:6016482

大小:21.00 KB

页数:1页

时间:2017-12-31

主成分分析与全成分分析区别_第1页
资源描述:

《主成分分析与全成分分析区别》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、主成分分析与全成分分析的区别主成分分析:是把几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关的一种数学降维的方法。 全成分分析:是将送检样品中的原材料、填料、助剂等进行定性定量分析。塑料原材料种类,填料种类、粒径,助剂种类都能影响对产品的性能、寿命,通常是同一种原材料、同 一种填料,因为助剂种类的不同,造成产品性能大不相同。主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在实际问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

2、这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主要目的是希望用较少的变量去解释原来资料中的大部分变量,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中变量的几个新变量,即所谓主成分

3、,并用以解释资料的综合性指标。由此可见,主成分分析实际上是一种降维方法。分析步骤数据标准化;一、求相关系数矩阵;二、一系列正交变换,使非对角线上的数置0,加到主对角上;三、得特征根xi(即相应那个主成分引起变异的方差),并按照从大到小的顺序把特征根排列;四、求各个特征根对应的特征向量;五、用下式计算每个特征根的贡献率Vi;Vi=xi/(x1+x2+........)六、根据特征根及其特征向量解释主成分物理意义。主成分分析的基本思想主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指

4、标来代替原来的指标。主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关.通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。主成分分析是把几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关的一种数学降维的方法。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。