欢迎来到天天文库
浏览记录
ID:59712102
大小:13.76 MB
页数:97页
时间:2020-11-20
《状态空间表达式教学内容.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、状态空间表达式1.1.3状态方程以状态变量为坐标轴所构成的维空间,称为状态空间。1.1.4状态方程由系统的状态变量构成的微分方程组称为系统的状态方程。用图下所示的网络,说明如何用状态变量描述这一系统。图一根据电学原理,容易写出两个含有状态变量的一阶微分方程组:亦即(1)式(1)就是图1.1系统的状态方程,式中若将状态变量用一般符号,表示,即令并写成矢量矩阵形式,则状态方程变为:或1.1.5输出方程在指定系统输出的情况下,该输出与状态变量间的函数关系式,称为系统的输出方程。如在图1.1系统中,指定作为输出,输出一般用y表示,则有:式中(2)状态方程和输
2、出方程合并起来,就是系统的状态空间表达式。或(3)式中或(4)1.1.6状态空间表达式在经典控制理论中,用指定某个输出量的高阶微分方程来描述系统的动态过程。如上图一所示的系统,在以作输出时,从式(1)消去中间变量i,得到二阶微分方程为:其相应的传递函数为:(6)(5)回到式(5)或式(6)的二阶系统,若改选和作为两个状态变量,即令则得一阶微分方程组为:说明:针对一个系统,状态变量的选取不唯一。Suchas(8)设单输入-单输出定常系统,其状态变量为则状态方程的一般形式为:输出方程式则有如下形式:用矢量矩阵表示时的状态空间表达式则为:因而多输入-多输出
3、系统状态空间表达式的矢量矩阵形式为:式中,x和A为同单输入系统,分别为n维状态矢量和n×n系统矩阵;为r维输入(或控制)矢量;为m维输出矢量;(9)(10)为了简便,下面除特别申明,在输出方程中,均不考虑输入矢量的直接传递,即令D=0。1.1.7状态空间表达式的系统框图和经典控制理论相类似,可以用框图表示系统信号传递的关系。对于式(9)和式(10)所描述的系统,它们的框图分别如图a和b所示。1.2状态变量及状态空间表达式的模拟结构图状态空间表达式的框图可按如下步骤绘制:积分器的数目应等于状态变量数,将它们画在适当的位置,每个积分器的输出表示相应的某个
4、状态变量,然后根据所给的状态方程和输出方程,画出相应的加法器和比例器,最后用箭头将这些元件连接起来。对于一阶标量微分方程:它的模拟结构图示于下图再以三阶微分方程为例:将最高阶导数留在等式左边,上式可改写成它的模拟结构图示于下图同样,已知状态空间表达式,也可画出相应的模拟结构图,下图是下列三阶系统的模拟结构图。下图是下列二输出的二阶系统的模拟结构图。1.3状态变量及状态空间表达式的建立(一)这个表达式一般可以从三个途径求得:一是由系统框图来建立,即根据系统各个环节的实际连接,写出相应的状态空问表达式;二是从系统的物理或化学的机理出发进行推导;三是由描述
5、系统运动过程的高阶微分方程或传递函数予以演化而得。1.3.1从系统框图出发建立状态空间表达式该法是首先将系统的各个环节,变换成相应的模拟结构图,并把每个积分器的输出选作一个状态变量其输入便是相应的然后,由模拟图直接写出系统的状态方程和输出方程。方块结构图状态空间表达式uy-+例:系统方块图如下图所示。试求其状态空间表达式。例:解:惯性环节:→→uy-+例:解:比例积分环节:→→uy-+例:解:综合惯性环节、积分环节模拟结构图得:uy-+uy解:选积分器的输出为状态变量得:uy状态方程:输出方程:状态空间表达式1.3.2从系统的机理出发建立状态空间表达
6、式一般常见的控制系统,按其能量属性,可分为电气、机械、机电、气动液压、热力等系统。根据其物理规律,如基尔霍夫定律、牛顿定律、能量守恒定律等,即可建立系统的状态方程。当指定系统的输出时,很容易写出系统的输出方程。例.试求用电枢电压控制的他激电动机的状态空间表达式(输入u(t),输出q(t))f转动惯量,粘性摩擦常数,电磁转矩常数,电势常数f解:电压方程:运动方程:电磁转矩转动惯量,粘性摩擦常数,电磁转矩常数,电势常数反电势解:电压方程:运动方程:令整理得:状态空间表达式-矩阵形式1.4状态变量及状态空间表达式的建立(二)考虑一个单变量线性定常系统,它的
7、运动方程是一个阶线性常系数微分方程:相应的传递函数为1.4.1传递函数中没有零点时的实现在这种情况下,系统的微分方程为:相应的系统传递函数为上式的实现,可以有多种结构,常用的简便形式可由相应的模拟结构图(下图)导出。这种由中间变量到输入端的负反馈,是一种常见的结构形式,也是一种最易求得的结构形式。将图中每个积分器的输出取作状态变量,有时称为相变量,它是输出的各阶导数。至于每个积分器的输入,显然就是各状态变量的导数。从图(a),容易列出系统的状态方程:输出方程为:表示成矩阵形式,则为:顺便指出,当矩阵具有式上矩阵的形式时,称为友矩阵,友矩阵的特点是主对
8、角线上方的元素均为1;最后一行的元素可取任意值;而其余元素均为零。例设解:选求(A,B,C,D)则:状态方程
此文档下载收益归作者所有