江苏省无锡市第一中学2020-2021学年度第一学期高二数学期中试卷及答案.doc

江苏省无锡市第一中学2020-2021学年度第一学期高二数学期中试卷及答案.doc

ID:59594303

大小:1.00 MB

页数:16页

时间:2020-11-14

江苏省无锡市第一中学2020-2021学年度第一学期高二数学期中试卷及答案.doc_第1页
江苏省无锡市第一中学2020-2021学年度第一学期高二数学期中试卷及答案.doc_第2页
江苏省无锡市第一中学2020-2021学年度第一学期高二数学期中试卷及答案.doc_第3页
江苏省无锡市第一中学2020-2021学年度第一学期高二数学期中试卷及答案.doc_第4页
江苏省无锡市第一中学2020-2021学年度第一学期高二数学期中试卷及答案.doc_第5页
资源描述:

《江苏省无锡市第一中学2020-2021学年度第一学期高二数学期中试卷及答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、无锡市第一中学2020—2021学年度第一学期期中试卷高二数学2020.11命题:吴明飞审核:程言峰一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果命题,命题,那么命题是命题的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.在平面内,到直线与到定点的距离相等的点的轨迹是A.抛物线B.双曲线C.椭圆D.直线3.在等差数列中,,则A.2B.3C.4D.54.已知等比数列的各项均为正实数,其前项和为,若,,则A.32B.

2、31C.64D.635.若椭圆的焦距为2,则实数的值为A.5B.2C.2或9D.5或76.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数

3、列的第19项为A.184B.174C.188D.1607.已知数列满足,.设,,且数列是单调递增数列,则实数的取值范围是A.B.C.D.8.数列是等差数列,,数列满足,,设为的前项和,则当取得最大值时,的值等于A.9B.10C.11D.12二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.169.设等差数列的前项和为,若,,则有A.B.C.D.10.已知双曲线过点且渐近线方程为,则下列结论正确的是A.双曲线的方

4、程为B.双曲线的离心率为C.曲线经过双曲线的一个焦点D.焦点到渐近线的距离为11.下列说法正确的是A.“”是“”的必要不充分条件B.“”是“”的充分不必要条件C.“”是“成等比数列”的充要条件D.设是公比为的等比数列,则“”是“为递增数列”的充分必要条件12.已知两监测点间距离为800米,且监测点听到爆炸声的时间比监测点迟2秒,设声速为340米/秒,下列说法正确的是A.爆炸点在以为焦点的椭圆上B.爆炸点在以为焦点的双曲线的一支上C.若监测点的声强是监测点的4倍(声强与距离的平方成反比),则爆炸点到监测点的

5、距离为米D.若监测点的声强是监测点的4倍(声强与距离的平方成反比),则爆炸点到监测点的距离为米三、填空题:本题共4小题,每小题5分,共20分.请把答案直接填写在答题卡相应位置上.13.命题“”的否定是▲.14.椭圆的右焦点为,以点为焦点的抛物线的标准方程是▲.15.已知是椭圆的一个焦点,为椭圆上一点,为坐标原点,若为等边三角形,则椭圆的离心率为▲.16.如图,在中,,点为的中点,点为线段垂直平分线上的一点,且,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的异侧,在移动过程中,当取得

6、最大值时,的面积为▲.16四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答。解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知公差不为零的等差数列的前项和为,且成等比数列.(1)求的通项公式;(2)已知,求数列的前项和.▲▲▲18.(本小题满分10分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.▲▲▲19.(本小题满分12分)已知直线与椭圆交于两点.(1)在,条件下,求

7、的面积的最大值;(2)当,时,求直线的方程.▲▲▲20.(本小题满分12分)已知各项均为正数的数列,其前项和为,满足.(1)求数列的通项公式;(2)若,求数列的前项和.▲▲▲1621.(本小题满分12分)某同学尝试用数学模型来说明隔离和医疗两大因素在对抗传染病时的作用.模型假设如下:假设1、传染病在人群中的表现有潜伏期和爆发期两种形式,潜伏期无症状,爆发期可以被人识别,无论在潜伏期还是爆发期的病人都具有相同的传染性.潜伏期时间记为m0,以潜伏期时间m0为一个传染周期;假设2、记r0为一个病人在一个传染周期

8、内平均感染人数;假设3、某一固定区域(如某个城市)的人群,保持原有的生活习惯,即r0不变.(1)第一模型:无干预模型.在上述模型假设中,取m0=1天,r0=1.2,假设初始的潜伏期人数为1万人,那么1天后将有1万人处于爆发期,1.2万人处于潜伏期,感染总人数为2.2万人,…,请问9天后感染总人数是多少?(2)第二模型:无限医疗模型.增加两个模型假设:假设4、政府和社会加大医疗投入,将所有爆发期的病人“应收尽收”;假设5、潜伏期

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。