椭圆的简单几何性质(一)(教案).doc

椭圆的简单几何性质(一)(教案).doc

ID:59515160

大小:230.00 KB

页数:8页

时间:2020-11-04

椭圆的简单几何性质(一)(教案).doc_第1页
椭圆的简单几何性质(一)(教案).doc_第2页
椭圆的简单几何性质(一)(教案).doc_第3页
椭圆的简单几何性质(一)(教案).doc_第4页
椭圆的简单几何性质(一)(教案).doc_第5页
资源描述:

《椭圆的简单几何性质(一)(教案).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.2椭圆的简单几何性质(第一课时)教学目标(一)教学知识点椭圆的范围、对称性、对称轴、对称中心、离心率及顶点.(二)能力训练要求1.使学生了解并掌握椭圆的范围.2使学生掌握椭圆的对称性,明确标准方程所表示的椭圆的对称轴、对称中心.3.使学生掌握椭圆的顶点坐标、长轴长、短轴长以及a、b、c的几何意义,明确标准方程所表示的椭圆的截距.4.使学生掌握离心率的定义及其几何意义.教学重点椭圆的简单几何性质.教学难点椭圆的简单几何性质.(这是第一次用代数的方法研究几何图形的性质的)教学方法师生共同讨论法.通过师生的共同讨论研究,学生的亲身实践体验,使学生明确椭圆的几何性质的研究方法,

2、加强对性质的理解,掌握椭圆的几何性质.教学过程Ⅰ.课题导入[师]前面,我们研究讨论椭圆的标准方程,(焦点在x轴上)或(焦点在y轴上)(板书)那么我们研究椭圆的标准方程有什么实际作用呢?同学们知道,2008年的8月,中国为世界奉献了一个空前盛况的奥运会,一个多月后的9月25日,世界的目光再次投向中国,同学们知道是什么事吗?(出示神七发射画片并解说):2008年9月25日21时,“神舟七号”载人飞船顺利升空,实现多人多天飞行和宇航员太空行走等多项先进技术,标志着我国航天事业又上了一个新台阶,请问:“神舟七号”载人飞船的运行轨道是什么?――对,是椭圆。据有关资料报道,飞船发射升空后,

3、进入的是以地球的地心为一个焦点,距地球表面近地点高度约200公里、远地点约346公里的椭圆轨道。我们在前几节课刚刚学习了椭圆的标准方程,请同学们回忆椭圆是标准方程是怎样的?它们有几种形式?问题1:我们前面刚刚学习了椭圆的标准方程,同学们还记得椭圆的标准方程吗?它有几种形式(板书)         (焦点在轴上)         (焦点在轴上)问题2:你想求出神七在宇宙中运行的椭圆轨道的标准方程吗?Ⅱ.讲授新课(板书标题)椭圆的几何性质首先我们进入本节课的第一个环节一、几何性质[师]我们不妨对焦点在x轴的椭圆的标准方程.(板书)(a>b>0)进行讨论.在解析几何里,我们常常是从两

4、个方面来研究曲线的几何性质:一是由曲线的图像去“看”曲线的几何特征(以形辅数),同时又由曲线的方程来“证”明它(以数助形)。我们今天也用这种方法来研究椭圆的几何性质,1.范围:[师]所谓范围,就是指椭圆图象上的所有的点在什么约束范围内,也就是说椭圆上所有的点的纵、横坐标应该在哪个范围内取值。那么,你能从椭圆的图形上看出椭圆上所有的点所在的范围吗?[师]请看,如果我们过椭圆与x轴的两个交点作两条平行于y轴的直线,再过椭圆与y轴的两个交点作两条平行于x的直线(出示幻灯片)。此时,你能说出椭圆的范围吗?[生]在一个矩形中[师]这两组平行线所在的直线方程是多少?能从椭圆的标准方程中找出

5、它来吗?[生]方程中两个非负数的和等于1,所以,椭圆上点的坐标(x,y)适合不等式:≤1,≤1即:x2≤a2,y2≤b2∴

6、x

7、≤a,

8、y

9、≤b这说明椭圆位于直线x=±a,y=±b所围成的矩形里.结论(板书)椭圆的范围是-a≤x≤a;-b≤y≤b[师]很好!请大家思考:对函数性质的研究常常是根据函数的解析来讨论的,那么我们能否从函数的思想出发,对椭圆的范围进行分析呢?[生](师点拨、提示)椭圆的标准方程可化为两个函数y=、y=-,对它们的定义域、值域分别进行讨论可得-a≤x≤a,-b≤y≤b,即椭圆位于直线x=±a,y=±b所围成的矩形里.[师]将由函数的解析式研究函数的性质与

10、由椭圆的方程研究椭圆的性质结合起来学习,有助于我们理解知识与知识之间的本质联系,对我们的进一步学习是大有益处的.2.对称性:[师]你能从椭圆的图形上看出椭圆的对称性吗?[生]关于轴、轴成轴对称;关于原点成中心对称。[师]我们怎样由椭圆的标准方程来研究椭圆的对称性?想一想,我们前面在函数中是怎样研究函数图像的对称性的?[师]在函数里,我们讨论过对称性,如果以如果以-x代x方程不变,那么曲线关于y轴对称,同理,以-y代y方程不变,那么曲线关于x轴对称,如果同时以-x代x,以-y代y方程不变,那么曲线关于原点对称.[师]我们来看椭圆的标准方程,以-x代x,或以-y代y或同时以-x代x

11、,-y代y,方程怎样改变?[生]没有改变.[师]所以椭圆关于x轴、y轴及原点都是对称的,这时坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心.结论(板书)坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫椭圆的中心.3.顶点:[师]什么叫做椭圆的顶点?———椭圆与它的对称轴的交点叫做椭圆的顶点.(板书)[师]由刚才我们所学的第二条性质,标准方程下的椭圆的对称轴是哪个?[生]坐标轴[师]那么标准方程下的椭圆的顶点就在坐标轴上。你能从椭圆的图形上看出椭圆有几个顶点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。