统计学概率ppt课件.ppt

统计学概率ppt课件.ppt

ID:59478737

大小:929.50 KB

页数:51页

时间:2020-09-14

统计学概率ppt课件.ppt_第1页
统计学概率ppt课件.ppt_第2页
统计学概率ppt课件.ppt_第3页
统计学概率ppt课件.ppt_第4页
统计学概率ppt课件.ppt_第5页
资源描述:

《统计学概率ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第4章随机变量的概率分布4.4离散随机变量的分布4.5连续随机变量的分布4.6使用概率来检验假设学习目标离散随机变量及相应的分布连续随机变量及相应的分布;利用概率进行决策分析。离散型随机变量与连续型随机变量试验随机变量可能的取值抽查100个产品取到次品的个数0,1,2,…,100一家餐馆营业一天顾客数0,1,2,…抽查一批电子原件使用寿命X0新建一座住宅楼半年完成工程的百分比0X100分布随机变量取一切可能值或范围的概率或概率的规律称为概率分布(probabilitydistribution,简称分布)。概率分布可以用各种图或表来表示;一些可以用公式来表示。概率分布是关

2、于总体的概念。有了概率分布就等于知道了总体。前面介绍过的样本均值、样本标准差和样本方差等样本特征的概念是相应的总体特征的反映。我们也有描述变量“位置”的总体均值、总体中位数、总体百分位数以及描述变量分散(集中)程度的总体标准差和总体方差等概念。4.4离散随机变量的分布离散变量只取离散的值,比如骰子的点数、网站点击数、顾客人数等等。每一种取值都有某种概率。各种取值点的概率总和应该是1。当然离散变量不不仅仅限于取非负整数值。一般来说,某离散随机变量的每一个可能取值xi都相应于取该值的概率p(xi),这些概率应该满足关系最简单的离散分布应该是基于可重复的有两结果(比如成功和失败)的

3、相同独立试验(每次试验成功概率相同)的分布,例如抛硬币。比如用p代表得到硬币正面的概率,那么1-p则是得到反面的概率。如果知道p,这个抛硬币的试验的概率分布也就都知道了。4.4.1二项分布这种有两个可能结果的试验有两个特点:一是各次试验互相独立,二是每次试验得到一种结果的概率不变(这里是得到正面的概率总是p)。类似于抛硬币的仅有两种结果的重复独立试验被称为贝努里试验(Bernoullitrials)。4.4.1二项分布下面试验可看成为贝努里试验:每一个进入某商场的顾客是否购买某商品每个被调查者是否认可某种产品每一个新出婴儿的性别。根据这种简单试验的分布,可以得到基于这个试验的

4、更加复杂事件的概率。为了方便,人们通常称贝努里试验的两种结果为“成功”和“失败”。4.4.1二项分布和贝努里试验相关的最常见的问题是:如果进行n次贝努里试验,每次成功的概率为p,那么成功k次的概率是多少?这个概率的分布就是所谓的二项分布(binomialdistribution)。这个分布有两个参数,一个是试验次数n,另一个是每次试验成功的概率p。基于此,二项分布用符号B(n,p)或Bin(n,p)表示。由于n和p可以根据实际情况取各种不同的值,因此二项分布是一族分布,族内的分布以这两个参数来区分。4.4.1二项分布一般公式。下面p(k)代表在n次Bernoulli试验中成功

5、的次数的概率,p为每次试验成功的概率。有这里为二项式系数,或记为4.4.1二项分布九个二项分布B(5,p)(p=0.1到0.9)的概率分布图另一个常用离散分布是Poisson分布(“泊松分布”)。它可以认为是衡量某种事件在一定期间出现的数目的概率。比如说在一定时间内顾客的人数、打入电话总机电话的个数、页面上出现印刷错误的个数、纺织品上出现疵点的个数。4.4.2Poisson分布在不同条件下,同样事件在单位时间中出现同等数目的概率不尽相同。比如中午和晚上某商店在10分钟内出现5个顾客的概率就不一定相同。因此,Poisson分布也是一个分布族。族中不同成员的区别在于事件出现数目的

6、均值l不一样。4.4.2Poisson分布参数为l的Poisson分布变量的概率分布为(p(k)表示Poisson变量等于k的概率)4.4.2Poisson分布参数为3、6、10的Poisson分布(只标出了20之内的部分)这里点间的连线没有意义,仅仅为容易识别而画,因为Poisson变量仅取非负整数值假定有一批500个产品,而其中有5个次品。假定该产品的质量检查采取随机抽取20个产品进行检查。如果抽到的20个产品中含有2个或更多不合格产品,则整个500个产品将会被退回。这时,人们想知道,该批产品被退回的概率是多少?这种概率就满足超几何分布(hypergeometricdis

7、tribution)。4.4.3超几何分布取连续值的变量,如高度、长度、重量、时间、距离等等;它们被称为连续变量(continuousvariable)。换言之,一个随机变量如果能够在一区间(无论这个区间多么小)内取任何值,则该变量称为在此区间内是连续的,其分布称为连续型概率分布。它们的概率分布很难准确地用离散变量概率的条形图表示。4.5连续变量的分布想象连续变量观测值的直方图;如果其纵坐标为相对频数,那么所有这些矩形条的高度和为1;完全可以重新设置量纲,使得这些矩形条的面积和为1。不断增加观测值及直方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。