几何中的最值问题.docx

几何中的最值问题.docx

ID:59431817

大小:130.40 KB

页数:6页

时间:2020-09-03

几何中的最值问题.docx_第1页
几何中的最值问题.docx_第2页
几何中的最值问题.docx_第3页
几何中的最值问题.docx_第4页
几何中的最值问题.docx_第5页
资源描述:

《几何中的最值问题.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯几何中的最值问题一、知识点睛几何中最值问题包括:“面积最值”及“线段(和、差)最值”.求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解;求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理.常用定理:1、两点之间,线段最短(已知两个定点时)2、垂线段最短(已知一个定点、一条定直线时)3、三角形三边关系(已知两边长固定或其和、差固定时)BAAPA+PB最小,B'l需转化,P使点在线异侧PlB'B

2、PA-PB

3、最大,需转化,使

4、点在线同侧二、精讲精练1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为______cm.AAPDADy蚂蚁AMPQEKP(a,0)N(a+2,0)OxC蜂蜜QB(4,-1)ONBBPC第1题图BCA(1,-3)第2题图第3题图第4题图第5题图2.如图,点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN周长的最小值为.3.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上

5、的动点,则DQ+PQ的最小值为.4.如图,在菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+QK的最小值为.yBC5.如图,当四边形PABN的周长最小时,a=.6、在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,则点F的坐标为.7、如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则PAPB的最大值等于.MDOEFAxAB

6、DPCN1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8、点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得PAPB的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OPOQ=.yCyAABFDPEMOBxPCAPBBOAx第8题图第9题图第10题图第11题图9、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________.10、如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以A

7、P和PB为边作等边△APC和等边△BPD,则CD长度的最小值为.11、如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是________.若将△ABP中边PA的长度改为22,另两边长度不变,则点P到原点的最大距离变为_________.BA'C12、动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,PAQD则点A′在BC边上可移动的最大距

8、离为.13、如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.(1)当P落在线段CD上时,PD的取值范围为;(2)当P落在直角梯形ABCD内部时,PD的最小值等于.DPCDCAFFPMNA'AEBAEBBC14、在△ABC中,∠BAC=120°,AB=AC=4,M、N两点分别是边AB、AC上的动点,将△AMN沿MN翻折,A点的对应点为A′,连接BA′,则BA′的最小值是_________.15.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直

9、线翻折得到△A′MN,连接A′C,则A′C长度的最小值是16、如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为17、如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作ABCD.若AB=3,则ABCD面积的最大值为.18、如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。